skip to main content
10.1145/2556288.2557306acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

What is a device bend gesture really good for?

Published:26 April 2014Publication History

ABSTRACT

Device deformation allows new types of gestures to be used in interaction. We identify that the gesture/use-case pairings proposed by interaction designers are often driven by factors relating improved tangibility, spatial directionality and strong metaphorical bonds. With this starting point, we argue that some of the designs may not make use of the full potential of deformation gestures as continuous, bipolar input techniques. In two user studies, we revisited the basics of deformation input by taking a new systematic look at the question of matching gestures with use cases. We observed comparable levels of UX when using bend input in different continuous bipolar interactions, irrespective of the choice of tangibility, directionality and metaphor. We concluded that device bend gestures use their full potential when used to control continuous bipolar parameters, and when quick reactions are needed. From our studies, we also identify relative strengths of absolute and relative mappings, and report a Fitts' law study for device bending input.

References

  1. Ahmaniemi, T.T. and Lantz, V.T. Augmented reality target finding based on tactile cues. in ICMI'09. 2009. Cambridge, Massachusetts, USA: ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Akamatsu, M. and MacKenzie, I.S., Movement characteristics using a mouse with tactile and force feedback. International Journal of Human-Computer Studies, 1996. 45: p. 483--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Burstyn, J., Banerjee, A., and Vertegaal, R., FlexView: an evaluation of depth navigation on deformable mobile devices, in TEI'13. 2013, ACM: Barcelona, Spain. p. 193--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Fitts, P.M., The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 1954. 47(6): p. 381--391.Google ScholarGoogle Scholar
  5. Gallant, D.T., Seniuk, A.G., and Vertegaal, R., Towards more paper-like input: flexible input devices for foldable interaction styles, in UIST'08. 2008, ACM: Monterey, CA, USA. p. 283--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Girouard, A., Tarun, A., and Vertegaal, R., DisplayStacks: interaction techniques for stacks of flexible thin-film displays, in CHI'12. 2012, ACM: Austin, Texas, USA. p. 2431--2440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Goyal, N. COMET: Collaboration in Mobile Environments by Twisting. in ECSCW'09. 2009. Vienna, Austria.Google ScholarGoogle Scholar
  8. Herkenrath, G., Karrer, T., and Borchers, J., Twend: twisting and bending as new interaction gesture in mobile devices, in Extended Abstracts on CHI'08. 2008, ACM: Florence, Italy. p. 3819--3824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Holman, D., Vertegaal, R., Altosaar, M., Troje, N., and Johns, D., Paper windows: interaction techniques for digital paper, in CHI'05. 2005, ACM: Portland, Oregon, USA. p. 591--599. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ishii, H., Tangible bits: beyond pixels, in TEI'08. 2008, ACM: Bonn, Germany. p. xv-xxv. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Khalilbeigi, M., Lissermann, R., Kleine, W., and Steimle, J., FoldMe: interacting with double-sided foldable displays, in TEI'12. 2012, ACM: Kingston, Ontario, Canada. p. 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Khalilbeigi, M., Lissermann, R., Muhlhauser, M., and Steimle, J., Xpaaand: interaction techniques for rollable displays, in CHI'11. 2011, ACM: Vancouver, BC, Canada. p. 2729--2732. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kildal, J. Interacting with Deformable User Interfaces: Effect of Material Stiffness and Type of Deformation Gesture. in HAID'12. 2012: Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kildal, J., Lucero, A., and Boberg, M., Twisting touch: combining deformation and touch as input within the same interaction cycle on handheld devices, in MobileHCI'13. 2013, ACM: Munich, Germany. p. 237246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kildal, J., Paasovaara, S., and Aaltonen, V., Kinetic device: designing interactions with a deformable mobile interface, in Extended Abstracts on CHI'12 2012, ACM: Austin, Texas, USA. p. 1871--1876. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kildal, J. and Wilson, G., Feeling it: the roles of stiffness, deformation range and feedback in the control of deformable ui, in ICMI'12. 2012, ACM: Santa Monica, California, USA. p. 393--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R., PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays, in CHI'11. 2011, ACM: Vancouver, BC, Canada. p. 1303--1312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, S.-S., Kim, S., Jin, B., Choi, E., Kim, B., Jia, X., Kim, D., and Lee, K.-p., How users manipulate deformable displays as input devices, in CHI'10. 2010, ACM: Atlanta, Georgia, USA. p. 1647--1656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Murakami, T. and Nakajima, N., DO-IT: deformable object as input tool for 3-D geometric operation. Computer-Aided Design, 2000. 32(1): p. 5--16.Google ScholarGoogle Scholar
  20. Murata. Murata's Flexible Remote. Available from: http://techcrunch.com/2011/09/23/muratas-flexibleremote-lets-you-control-your-tv-with-bending-andtwisting-motions/.Google ScholarGoogle Scholar
  21. Nokia. NRC developed Nokia Kinetic prototype demoed at Nokia World 2011. 2011 {cited 2013 12.9.2013}; Available from: http://research.nokia.com/news/12110.Google ScholarGoogle Scholar
  22. Raghu Prasad, M.S., Purswani, S., and Manivannan, M. Modeling of Human Hand Force Based Tasks Using Fitts's Law. in ICoRD'13. 2013: Springer India.Google ScholarGoogle Scholar
  23. Ramos, G., Boulos, M., and Balakrishnan, R. Pressure widgets. in SIGCHI conference on Human factors in computing systems. 2004. Vienna, Austria. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rohs, M., Oulasvirta, A., and Suomalainen, T., Interaction with magic lenses: real-world validation of a Fitts' Law model, in CHI'11. 2011, ACM: Vancouver, BC, Canada. p. 2725--2728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Roudaut, A., Karnik, A., Lochtefeld, M., and Subramanian, S., Morphees: toward high "shape resolution" in self-actuated flexible mobile devices, in CHI'13. 2013, ACM: Paris, France. p. 593--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Schwesig, C., Poupyrev, I., and Mori, E., Gummi: a bendable computer, in CHI'04. 2004, ACM: Vienna, Austria. p. 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Scott, J., Brown, L., and Molloy, M., Mobile Device Interaction with Force Sensing. Pervasive Computing, ed. H. Tokuda, et al. Vol. 5538. 2009: Springer Berlin Heidelberg. 133--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sheng, J., Balakrishnan, R., and Singh, K., An interface for virtual 3D sculpting via physical proxy, in GRAPHITE'06. 2006, ACM: Kuala Lumpur, Malaysia. p. 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Steimle, J., Jordt, A., and Maes, P., Flexpad: highly flexible bending interactions for projected handheld displays, in CHI'13. 2013, ACM: Paris, France. p. 237246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tajika, T., Yonezawa, T., and Mitsunaga, N., Intuitive page-turning interface of e-books on flexible e-paper based on user studies, in MM'08. 2008, ACM: Vancouver, British Columbia, Canada. p. 793--796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tarun, A.P., Wang, P., Girouard, A., Strohmeier, P., Reilly, D., and Vertegaal, R., PaperTab: an electronic paper computer with multiple large flexible electrophoretic displays, in Extended Abstracts on CHI'13. 2013, ACM: Paris, France. p. 3131--3134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vertegaal, R. and Poupyrev, I., Organic User Interfaces. Commun. ACM, 2008. 51(6): p. 26--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Warren, K., Lo, J., Vadgama, V., and Girouard, A., Bending the rules: bend gesture classification for flexible displays, in CHI'13. 2013, ACM: Paris, France. p. 607--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Watanabe, J.-I., Mochizuki, A., and Horry, Y., Bookisheet: bendable device for browsing content using the metaphor of leafing through the pages, in Ubicomp'08. 2008, ACM: Seoul, Korea. p. 360--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wightman, D., Ginn, T., and Vertegaal, R., Bendflip: examining input techniques for electronic book readers with flexible form factors, in INTERACT'11. 2011, Springer-Verlag: Lisbon, Portugal. p. 117--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ye, Z. and Khalid, H., Cobra: flexible displays for mobilegaming scenarios, in Extended Abstracts on CHI'10. 2010, ACM: Atlanta, Georgia, USA. p. 4363--4368. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. What is a device bend gesture really good for?

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2014
      4206 pages
      ISBN:9781450324731
      DOI:10.1145/2556288

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '14 Paper Acceptance Rate465of2,043submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader