skip to main content
article
Free Access

Separators for sphere-packings and nearest neighbor graphs

Published:15 January 1997Publication History
Skip Abstract Section

Abstract

A collection of n balls in d dimensions forms a k-ply system if no point in the space is covered by more than k balls. We show that for every k-ply system Γ, there is a sphere S that intersects at most O(k1/dn1−1/d) balls of Γ and divides the remainder of Γ into two parts: those in the interior and those in the exterior of the sphere S, respectively, so that the larger part contains at most (1−1/(d+2))n balls. This bound of (O(k1/dn1−1/d) is the best possible in both n and k. We also present a simple randomized algorithm to find such a sphere in O(n) time. Our result implies that every k-nearest neighbor graphs of n points in d dimensions has a separator of size O(k1/dn1−1/d). In conjunction with a result of Koebe that every triangulated planar graph is isomorphic to the intersection graph of a disk-packing, our result not only gives a new geometric proof of the planar separator theorem of Lipton and Tarjan, but also generalizes it to higher dimensions. The separator algorithm can be used for point location and geometric divide and conquer in a fixed dimensional space.

References

  1. ALON, N., SEYMOUR, P., AND THOMAS, R. 1990. A separator theorem for graphs with an excluded minor and its applications. In Proceedings of the 22th Annual ACM Symposium on Theory of Computing (Baltimore, Md., May 14-16). ACM, New York, pp. 293-299.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. ANDREEV, E.M. 1970a. On convex polyhedra in Lobacevskii space. Math. USSR Sbornik 10, 3, 413-440.]]Google ScholarGoogle ScholarCross RefCross Ref
  3. ANDREEV, E.M. 1970b. On convex polyhedra of finite volume in Lobacevskii space. Math. USSR Sbornik, 12, 2, 270-259.]]Google ScholarGoogle ScholarCross RefCross Ref
  4. BENTLEY, J.L. 1980. Multidimensional divide-and-conquer. Commun. ACM 23, 4 (Apr.), 214-229.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. CLARKSON, K. 1983. Fast algorithm for the all-nearest-neighbors problem. In Proceedings of the 24th Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 226-232.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. CLARKSON, K., EPPSTEIN, D., MILLER, G., STURTIVANT, C., AND TENG, S.-H. 1993. Approximating center points with iterated radon points. In Proceedings of 9th Annual ACM Symposium on Computational Geometry (San Diego, Calif., May 19-21). ACM, New York, pp. 91-98.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. CONWAY, J. H., AND SLOANE, N. J.A. 1988. Sphere Packings, Lattices and Groups. Springer-Verlag, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R.L. 1990. Introduction to Algorithms. MIT Press, Cambridge, Mass.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. DANZER, L., FONLUPT, J., AND KLEE, V. 1963. Helly's theorem and its relatives. In Proceedings of Symposia in Pure Mathematics, vol. 7. American Mathematical Society, 7:101-180.]]Google ScholarGoogle Scholar
  10. DE FRAYSSEIX, H., PACH, J., AND POLLACK, R. 1988. Small sets supporting F#ry embeddings of planar graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (Chicago, Ill., May 2-4). ACM, New York, pp. 426-433.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. EDELSBRUNNER, H. 1987. Algorithms in Combinatorial Geometry. Springer-Verlag, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. EPPSTEIN, D., AND ERICKSON, J. 1994. Iterated nearest neighbors and finding minimal polytopes. Disc. Comput. Geometry, 11, (3), 321-350.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. EPPSTEIN, D., MILLER, G. L., AND TENG, S.-H. 1993. A deterministic linear time algorithm for geometric separators and its applications. In Proceedings of 9th Annual ACM Symposium on Computational Geometry (San Diego, Calif., May 19-21). ACM, New York, pp. 99-108.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. F#.RY, I. 1948. On straight line representing of planar graphs. Acta. Sci. Math. 24, 229-233.]]Google ScholarGoogle Scholar
  15. FRIEZE, A., MILLER, G., AND TENG, S.-H. 1992. Separator-based parallel divide and conquer in computational geometry. In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures (San Diego, Calif., June 29-July 1). ACM, New York, pp. 422-430.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. GILBERT, J. R., MILLER, G. L., AND TENG, S.-H. 1997. Geometric mesh partitioning: Implementation and experiments. SIAM J. Sci. Comput., to appear.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. GILBERT, J. R., HUTCHINSON, J. P., AND TARJAN, R.E. 1984. A separation theorem for graphs of bounded genus. J. Algorithms 5, 391-407.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. GROTSCHEL, M., LOVASZ, L., AND SCHRIJVER, A. 1988. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  19. GUIBAS, L., PACH, J., AND SHARIR, M. 1994. Sphere-of-influence graphs in higher dimensions. In Intuitive Geometry, K. Boroczky and G. Fejes Toth, eds. Colloquia Mathematica Societatis J. Bolyai, vol. 63. North-Holland, Amsterdam, The Netherlands, pp. 131-137.]]Google ScholarGoogle Scholar
  20. HAUSSLER, D., AND WELZL, E. 1987. e-net and simplex range queries. Disc. Comput. Geometry 2, 127-151.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. JORDAN, C. 1869. Sur les assemblages de lignes. J. Reine Angew. Math. 70, 185-190.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. KABATIANSKY, G. A., AND LEVENSHTEIN, V.I. 1978. Bounds for packings on a sphere and in space. Prob. Per. Info. 14, 1, 3-25.]]Google ScholarGoogle Scholar
  23. KOEBE, P. 1936. Kontaktprobleme der konformen Abbildung. Ber. Verh. Sdchs. Akademie der Wissenschaften Leipzig, Math.-Phys. Klasse 88, 141-164.]]Google ScholarGoogle Scholar
  24. LEIGHTON, F.T. 1983. Complexity Issues in VLSI. Foundations of Computing. MIT Press, Cambridge, Mass.]]Google ScholarGoogle Scholar
  25. LEISERSON, C.E. 1983. Area-Efficient VLSI Computation. Foundations of Computing. MIT Press, Cambridge, Mass.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. LINIAL, N., LONDON, E., AND RABINOVICH, Y. 1995. The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 2, 215-245.]]Google ScholarGoogle ScholarCross RefCross Ref
  27. LIPTON, R. J., AND TARJAN, R.E. 1979. A separator theorem for planar graphs. SIAM J. Appl. Math. 36, (Apr.), 177-189.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. LIPTON, R. J., ROSE, D. J., AND TARJAN, R. E. 1979. Generalized nested dissection. SIAM J. Numer. Anal. 16, 346-358.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. MILLER, G. L., TENG, S.-H., AND VAVASIS, S.A. 1991. An unified geometric approach to graph separators. In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 538-547.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. MILLER, G. L., TENG, S.-H., THURSTON, W., AND VAVASIS, S.A. 1993. Automatic mesh partitioning. In Sparse Matrix Computations: Graph Theory Issues and Algorithms, A. George, J. Gilbert, and J. Liu, eds. IMA Volumes in Mathematics and Its Applications. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  31. MILLER, G. L., TENG, S.-H., THURSTON, W., AND VAVASIS, S.A. 1997. Geometric separators for finite element meshes. SIAM J. Sci. Comput., to appear.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. MILLER, G. L., AND THURSTON, W. 1990. Separators in two and three dimensions. In Proceedings of the 22th Annual ACM Symposium on Theory of Computing, (Baltimore, Md., May 14-16). ACM, New York, pp. 300-309.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. MILLER, G. L., AND VAVASIS, S.A. 1991. Density graphs and separators. In Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, Calif., Jan. 28-30). ACM, New York, pp. 331-336.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. MOHAR, B. 1993. A polynomial time circle packing algorithm. Disc. Comput. Geom. 241-250.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. PACH, J., AND AGARWAL, P. 1995. Combinatorial Geometry. Wiley-Interscience, New York.]]Google ScholarGoogle Scholar
  36. PLOTKIN, S., RAO, S., AND SMITH, W. D. 1994. Shallow excluded minors and improved graph decomposition. In Proceedings at the 5th Symposium Discrete Algorithms. SIAM, New York, pp. 462-470.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. PREPARATA, F. P., AND SHAMOS, M.I. 1985. Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. SOMMERVILLE, D. M.Y. 1958. An Introduction to the Geometry of n Dimensions. Dover, New York.]]Google ScholarGoogle Scholar
  39. SPIELMAN, D. A., AND TENG, S.-H. 1996a. Disk packings and planar separators. In Proceedings of 12th Annual ACM Symposium on Computational Geometry (Philadelphia, Pa., May 24-26). ACM, New York, pp. 349-359.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. SPIELMAN, D. A., AND TENG, S.-H. 1996b. Spectral partitioning works: planar graphs and finite element meshes. UCB//CSD-96-898, U.C. Berkeley, Berkeley, California.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. TENG, S.-H. 1991. Points, Spheres, and Separators: A unified geometric approach to graph partitioning. Ph.D. dissertation. CMU-CS-91-184. School of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. TENG, S.-H. 1994. Combinatorial aspects of geometric graphs. MIT Tech. Rep. TR-612. May. In Lecture Notes in Computer Science. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  43. THOMASSEN, C. 1980. Planarity and duality of finite and infinite graphs. J. Combin. Theory, Series B 29, 244-271.]]Google ScholarGoogle ScholarCross RefCross Ref
  44. TOUSSAINT, G. 1988. A graph-theoretical primal sketch. In Computational Morphology, G. Toussaint, ed., Elsevier-North Holland, Amsterdam, The Netherlands, pp. 229-260.]]Google ScholarGoogle Scholar
  45. THURSTON, W.P. 1988. The geometry and topology of 3-manifolds. Princeton University Notes, Princeton, N.J.]]Google ScholarGoogle Scholar
  46. TUTTE, W.T. 1960. Convex representations of graphs. Proc. London Math. Soc. 10, 3, 304-320.]]Google ScholarGoogle ScholarCross RefCross Ref
  47. TUTTE, W.T. 1963. How to draw a graph. Proc. London Math. Soc. 13, 3, 743-768.]]Google ScholarGoogle ScholarCross RefCross Ref
  48. UNGAR, P. 1951. A theorem on planar graphs. J. London Math Soc. 26, 256-262.]]Google ScholarGoogle ScholarCross RefCross Ref
  49. VALIANT, L. G. 1981. Universality consideration in VLSI circuits. IEEE Trans. Comput. 30, 2 (Feb.). 135-140.]]Google ScholarGoogle Scholar
  50. VAPNIK V, N. AND CHERVONENKIS, A. YA. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory Prob. Appl. 16, 264-280.]]Google ScholarGoogle ScholarCross RefCross Ref
  51. VAVASIS, S. A. 1991. Automatic domain partitioning in three dimensions. SIAM J. Sci. Stat. Comput. 12, 950-970.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. WYNER, A. D. 1965. Capabilities of bounded discrepancy decoding. Bell System Tech. J. 44, 1061-1122.]]Google ScholarGoogle ScholarCross RefCross Ref
  53. ZIEGLER, G.M. 1988.Lectures on polytopes. In Graduate Texts in Mathematics, vol. 152. Springer- Verlag, New York.]]Google ScholarGoogle Scholar

Index Terms

  1. Separators for sphere-packings and nearest neighbor graphs

                    Recommendations

                    Comments

                    Login options

                    Check if you have access through your login credentials or your institution to get full access on this article.

                    Sign in

                    Full Access

                    • Published in

                      cover image Journal of the ACM
                      Journal of the ACM  Volume 44, Issue 1
                      Jan. 1997
                      199 pages
                      ISSN:0004-5411
                      EISSN:1557-735X
                      DOI:10.1145/256292
                      Issue’s Table of Contents

                      Copyright © 1997 ACM

                      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                      Publisher

                      Association for Computing Machinery

                      New York, NY, United States

                      Publication History

                      • Published: 15 January 1997
                      Published in jacm Volume 44, Issue 1

                      Permissions

                      Request permissions about this article.

                      Request Permissions

                      Check for updates

                      Qualifiers

                      • article

                    PDF Format

                    View or Download as a PDF file.

                    PDF

                    eReader

                    View online with eReader.

                    eReader