skip to main content
10.1145/2582112.2582128acmotherconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
tutorial

Stochastic Convergence of Persistence Landscapes and Silhouettes

Authors Info & Claims
Published:08 June 2014Publication History

ABSTRACT

Persistent homology is a widely used tool in Topological Data Analysis that encodes multiscale topological information as a multi-set of points in the plane called a persistence diagram. It is difficult to apply statistical theory directly to a random sample of diagrams. Instead, we can summarize the persistent homology with the persistence landscape, introduced by Bubenik, which converts a diagram into a well-behaved real-valued function. We investigate the statistical properties of landscapes, such as weak convergence of the average landscapes and convergence of the bootstrap. In addition, we introduce an alternate functional summary of persistent homology, which we call the silhouette, and derive an analogous statistical theory.

References

  1. S. Balakrishnan, B. Fasy, F. Lecci, A. Rinaldo, A. Singh, and L. Wasserman. Statistical inference for persistent homology, 2013. arXiv 1303.7117.Google ScholarGoogle Scholar
  2. P. Bubenik. Statistical topology using persistence landscapes, 2012. arXiv 1207.6437.Google ScholarGoogle Scholar
  3. F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules, July 2012. arXiv 1207.3674.Google ScholarGoogle Scholar
  4. F. Chazal, V. de Silva, and S. Oudot. Persistence stability for geometric complexes. Geom. Dedicata, Dec. 2013.Google ScholarGoogle Scholar
  5. F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, A. Singh, and L. Wasserman. On the bootstrap for persistence diagrams and landscapes, 2013. arXiv 1311.0376.Google ScholarGoogle Scholar
  6. F. Chazal, C. Labruère, M. Glisse, and B. Michel. Optimal rates of convergence for persistence diagrams in topological data analysis. arXiv 1305.6239, 2013.Google ScholarGoogle Scholar
  7. V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximation of suprema of empirical processes, 2012. arXiv 1212.6885.Google ScholarGoogle ScholarCross RefCross Ref
  8. V. Chernozhukov, D. Chetverikov, and K. Kato. Anti-concentration and honest adaptive confidence bands, 2013. arXiv 1303.7152.Google ScholarGoogle Scholar
  9. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete Comput. Geom., 37(1):103--120, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Diaconis, S. Holmes, and M. Shahshahani. Sampling from a manifold, 2012. arXiv 1206.6913.Google ScholarGoogle Scholar
  11. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Disc. Comput. Geom., 28(4):511--533, July 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Efron. Bootstrap methods: another look at the jackknife. The Annals of Statistics, pages 1--26, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  13. B. Efron and R. Tibshirani. An introduction to the bootstrap, volume 57. CRC press, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  14. E. Munch, P. Bendich, K. Turner, S. Mukherjee, J. Mattingly, and J. Harer. Probabilistic Fréchet means and statistics on vineyards, 2013. arXiv 1307.6530.Google ScholarGoogle Scholar
  15. M. Talagrand. Sharper bounds for Gaussian and empirical processes. The Annals of Probability, 22(1):28--76, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  16. K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Fréchet means for distributions of persistence diagrams, 2012. arXiv 1206.2790.Google ScholarGoogle Scholar
  17. A. van der Vaart. Asymptotic Statistics, volume 3. Cambridge UP, 2000.Google ScholarGoogle Scholar
  18. A. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Verlag, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Zomorodian and G. Carlsson. Computing persistent homology. Disc. Comp. Geom., 33(2):249--274, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Stochastic Convergence of Persistence Landscapes and Silhouettes

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      SOCG'14: Proceedings of the thirtieth annual symposium on Computational geometry
      June 2014
      588 pages
      ISBN:9781450325943
      DOI:10.1145/2582112

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 June 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial
      • Research
      • Refereed limited

      Acceptance Rates

      SOCG'14 Paper Acceptance Rate60of175submissions,34%Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader