skip to main content
research-article

Nearly Optimal Solutions for the Chow Parameters Problem and Low-Weight Approximation of Halfspaces

Published:24 April 2014Publication History
Skip Abstract Section

Abstract

The Chow parameters of a Boolean function f:{−1, 1}n → {−1, 1} are its n+1 degree-0 and degree-1 Fourier coefficients. It has been known since 1961 [Chow 1961; Tannenbaum 1961] that the (exact values of the) Chow parameters of any linear threshold function f uniquely specify f within the space of all Boolean functions, but until recently [O'Donnell and Servedio 2011] nothing was known about efficient algorithms for reconstructing f (exactly or approximately) from exact or approximate values of its Chow parameters. We refer to this reconstruction problem as the Chow Parameters Problem.

Our main result is a new algorithm for the Chow Parameters Problem which, given (sufficiently accurate approximations to) the Chow parameters of any linear threshold function f, runs in time Õ(n2) ⋅ (1/ϵ)O(log2(1/ϵ)) and with high probability outputs a representation of an LTF f′ that is ϵ-close to f in Hamming distance. The only previous algorithm [O'Donnell and Servedio 2011] had running time poly(n) ⋅ 22Õ(1/ϵ2).

As a byproduct of our approach, we show that for any linear threshold function f over {-1, 1}n, there is a linear threshold function f′ which is ϵ-close to f and has all weights that are integers of magnitude at most √n ⋅ (1/ϵ)O(log2(1/ϵ)). This significantly improves the previous best result of Diakonikolas and Servedio [2009] which gave a poly(n) ⋅ 2Õ(1/ϵ2/3) weight bound, and is close to the known lower bound of max{√n, (1/ϵ)Ω(log log (1/ϵ))} [Goldberg 2006; Servedio 2007]. Our techniques also yield improved algorithms for related problems in learning theory.

In addition to being significantly stronger than previous work, our results are obtained using conceptually simpler proofs. The two main ingredients underlying our results are (1) a new structural result showing that for f any linear threshold function and g any bounded function, if the Chow parameters of f are close to the Chow parameters of g then f is close to g; (2) a new boosting-like algorithm that given approximations to the Chow parameters of a linear threshold function outputs a bounded function whose Chow parameters are close to those of f.

References

  1. H. Aziz, M. Paterson, and D. Leech. 2007. Efficient algorithm for designing weighted voting games. In Proceedings of the IEEE International Multitopic Conference. 1--6.Google ScholarGoogle Scholar
  2. J. Banzhaf. 1965. Weighted voting doesn't work: A mathematical analysis. Rutgers Law Rev. 19, 317--343.Google ScholarGoogle Scholar
  3. C. R. Baugh. 1973. Chow parameters in pseudothreshold logic. In Proceedings of SWAT (FOCS). 49--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Ben-David and E. Dichterman. 1998. Learning with restricted focus of attention. J. Comput. System Sci. 56, 3, 277--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Birkendorf, E. Dichterman, J. Jackson, N. Klasner, and H. U. Simon. 1998. On restricted-focus-of-attention learnability of Boolean functions. Mach. Learn. 30, 89--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Bruck. 1990. Harmonic analysis of polynomial threshold functions. SIAM J. Disc. Math. 3, 2, 168--177.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Carreras. 2004. On the design of voting games. Math. Meth. Oper. Res. 59, 3, 503--515.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Cheraghchi, J. Håstad, M. Isaksson, and O. Svensson. 2010. Approximating linear threshold predicates. In Proceedings of the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX'10). 110--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. K. Chow. 1961. On the characterization of threshold functions. In Proceedings of the Symposium on Switching Circuit Theory and Logical Design (FOCS). 34--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. De, I. Diakonikolas, and R.A. Servedio. 2012. The inverse Shapley value problem. In Proceedings of ICALP. 266--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. de Keijzer, T. Klos, and Y. Zhang. 2010. Enumeration and exact design of weighted voting games. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. (AAMAS'10). Vol. 1, 391--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Dertouzos. 1965. Threshold Logic: A Synthesis Approach. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  13. I. Diakonikolas, P. Gopalan, R. Jaiswal, R. Servedio, and E. Viola. 2010. Bounded independence fools halfspaces. SIAM J. Comput. 39, 8, 3441--3462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. I. Diakonikolas and R. Servedio. 2009. Improved approximation of linear threshold functions. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC). 161--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Dubey and L. S. Shapley. 1979. Mathematical properties of the Banzhaf power index. Math. Oper. Res. 4, 99--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. Einy and E. Lehrer. 1989. Regular simple games. Int. J. Game Theory 18, 195--207. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. C. Elgot. 1960. Truth functions realizable by single threshold organs. In Proceedings of the Symposium on Switching Circuit Theory and Logical Design (FOCS). 225--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. V. Feldman. 2010. Distribution-specific agnostic boosting. In Proceedings of the Conference on Innovations in Computer Science. 241--250.Google ScholarGoogle Scholar
  19. V. Feldman. 2012. Learning DNF expressions from Fourier spectrum. In Proceedings of Conference on Learning Theory. 17.1--17.19.Google ScholarGoogle Scholar
  20. V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu. 2009. Agnostic learning of monomials by halfspaces is hard. In Proceedings of FOCS. 385--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W. Feller. 1968. An Introduction to Probability Theory and Its Applications. Wiley.Google ScholarGoogle Scholar
  22. D. Felsenthal and M. Machover. 2004. A priori voting power: What is it all about? Polit. Stud. Rev. 2, 1, 1--23.Google ScholarGoogle Scholar
  23. J. Freixas. 1997. Different ways to represent weighted majority games. J. Span. Soc. Stat. Oper. Res. 5, 2, 201--212.Google ScholarGoogle Scholar
  24. P. Goldberg. 2006. A bound on the precision required to estimate a Boolean perceptron from its average satisfying assignment. SIAM J. Disc. Math. 20, 328--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. G. Halász. 1977. Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hungar. 8, 3, 197--211.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Håstad. 1994. On the size of weights for threshold gates. SIAM J. Disc. Math. 7, 3, 484--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. L. Hurst. 1973. The application of Chow parameters and Rademacher-Walsh matrices in the synthesis of binary functions. Comput. J. 16, 165--173. Issue 2.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Impagliazzo. 1995. Hard-core distributions for somewhat hard problems. In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, 538--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. 2005. Agnostically learning halfspaces. In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS). 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. R. Kaplan and R. O. Winder. 1965. Chebyshev approximation and threshold functions. IEEE Trans. Electronic Comput. EC-14, 315--325.Google ScholarGoogle ScholarCross RefCross Ref
  31. P. Kaszerman. 1963. A geometric test-synthesis procedure for a threshold device. Inf. Cont. 6, 4, 381--398.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Kearns, R. Schapire, and L. Sellie. 1994. Toward efficient agnostic learning. Mach. Learn. 17, 2/3, 115--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Kurz. 2012. On the inverse power index problem. Optimization 61, 8, 989--1011.Google ScholarGoogle ScholarCross RefCross Ref
  34. S. Kurz and S. Napel. 2012. Heuristic and exact solutions to the inverse power index problem for small voting bodies. arxiv report http://arxiv.org/abs/1202.6245.Google ScholarGoogle Scholar
  35. E. Lapidot. 1972. The counting vector of a simple game. Proc. AMS 31, 228--231.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Laruelle and M. Widgren. 1998. Is the allocation of voting power among EU states fair? Public Choice 94, 317--339.Google ScholarGoogle Scholar
  37. D. Leech. 2002a. Designing the voting system for the EU Council of Ministers. Public Choice 113, 437--464.Google ScholarGoogle ScholarCross RefCross Ref
  38. D. Leech. 2002b. Voting power in the governance of the International Monetary Fund. Ann. Oper. Res. 109, 375--397.Google ScholarGoogle ScholarCross RefCross Ref
  39. D. Leech. 2003. Power indices as an aid to institutional design: The generalised apportionment problem. In Yearbook on New Political Economy, M. Holler, H. Kliemt, D. Schmidtchen, and M. Streit (Eds.).Google ScholarGoogle Scholar
  40. K. Matulef, R. O'Donnell, R. Rubinfeld, and R. Servedio. 2010. Testing halfspaces. SIAM J. Comput. 39, 5, 2004--2047. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. S. Muroga, I. Toda, and M. Kondo. 1962. Majority decision functions of up to six variables. Math. Comput. 16, 459--472.Google ScholarGoogle ScholarCross RefCross Ref
  42. S. Muroga, T. Tsuboi, and C. R. Baugh. 1967. Enumeration of threshold functions of eight variables. Tech. Rep. 245. Univ. Illinois, Urbana.Google ScholarGoogle Scholar
  43. A. M. Odlyzko. 1988. On subspaces spanned by random selections of ± 1 vectors. J. Comb. Theory, Ser. A 47, 1, 124--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. R. O'Donnell and R. Servedio. 2011. The Chow parameters problem. SIAM J. Comput. 40, 1, 165--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. L. S. Penrose. 1946. The elementary statistics of majority voting. J. Roy. Stat. Soc. 109, 1, 53--57.Google ScholarGoogle ScholarCross RefCross Ref
  46. V. P. Roychowdhury, K.-Y. Siu, A. Orlitsky, and T. Kailath. 1995. Vector analysis of threshold functions. Inf. Computat. 120, 1, 22--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. R. Servedio. 2007. Every linear threshold function has a low-weight approximator. Comput. Complex. 16, 2, 180--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. I. S. Shiganov. 1986. Refinement of the upper bound of the constant in the central limit theorem. J. Sov. Math. 2545--2550.Google ScholarGoogle Scholar
  49. K. Takamiya and A. Tanaka. 2006. Computational complexity in the design of voting games. Tech. Rep. 653. The Institute of Social and Economic Research, Osaka University.Google ScholarGoogle Scholar
  50. M. Tannenbaum. 1961. The establishment of a unique representation for a linearly separable function. Tech. Rep. Lockheed Missiles and Space Co. Threshold Switching Techniques Note 20, 1--5.Google ScholarGoogle Scholar
  51. T. Tao and V. H. Vu. 2009. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices. Ann. Math. 169, 595--632.Google ScholarGoogle ScholarCross RefCross Ref
  52. A. Taylor and W. Zwicker. 1992. A characterization of weighted voting. Proc. AMS 115, 4, 1089--1094.Google ScholarGoogle ScholarCross RefCross Ref
  53. L. Trevisan, M. Tulsiani, and S. P. Vadhan. 2009. Regularity, boosting, and efficiently simulating every high-entropy distribution. In Proceedings of the IEEE Conference on Computational Complexity. 126--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. R. O. Winder. 1963. Threshold logic in artificial intelligence. In Artificial Intelligence, IEEE Publication S-142, 107--128.Google ScholarGoogle Scholar
  55. R. O. Winder. 1964. Threshold functions through n = 7. Tech. Rep. 7. Air Force Cambridge Research Laboratories.Google ScholarGoogle Scholar
  56. R. O. Winder. 1969. Threshold gate approximations based on Chow parameters. IEEE Trans. Comput. 372--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. R. O. Winder. 1971. Chow parameters in threshold logic. J. ACM 18, 2, 265--289. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nearly Optimal Solutions for the Chow Parameters Problem and Low-Weight Approximation of Halfspaces

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 61, Issue 2
        April 2014
        206 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/2605175
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 April 2014
        • Accepted: 1 October 2013
        • Revised: 1 May 2013
        • Received: 1 July 2012
        Published in jacm Volume 61, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader