skip to main content
research-article

Moment-Based Methods for Parameter Inference and Experiment Design for Stochastic Biochemical Reaction Networks

Published:17 February 2015Publication History
Skip Abstract Section

Abstract

Continuous-time Markov chains are commonly used in practice for modeling biochemical reaction networks in which the inherent randomness of the molecular interactions cannot be ignored. This has motivated recent research effort into methods for parameter inference and experiment design for such models. The major difficulty is that such methods usually require one to iteratively solve the chemical master equation that governs the time evolution of the probability distribution of the system. This, however, is rarely possible, and even approximation techniques remain limited to relatively small and simple systems. An alternative explored in this article is to base methods on only some low-order moments of the entire probability distribution. We summarize the theory behind such moment-based methods for parameter inference and experiment design and provide new case studies where we investigate their performance.

References

  1. M. Acar, J. Mettetal, and A. van Oudenaarden. 2008. Stochastic switching as a survival strategy in fluctuating environments. Nature Genetics 40, 2008, 471--475. DOI: http://dx.doi.org/10.1038/ng.110Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Ale, P. Kirk, and M. Stumpf. 2013. A general moment expansion method for stochastic kinetic models. Journal of Chemical Physics 138, 2013, 174101. DOI: http://dx.doi.org/10.1063/1.4802475Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Andreychenko, L. Mikeev, D. Spieler, and V. Wolf. 2011. Parameter identification for Markov models of biochemical reactions. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11). (2011), 83--98. DOI: http://dx.doi.org/10.1007/978-3-642-22110-1_8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Balazsi, A. van Oudenaarden, and J. Collins. 2011. Cellular decision making and biological noise: From microbes to mammals. Cell 144, 2011, 910--925. DOI: http://dx.doi.org/10.1016/j.cell.2011.01.030Google ScholarGoogle Scholar
  5. A. Colman-Lerner, A. Gordon, E. Serra, T. Chin, O. Resnekov, D. Endy, G. Pesce, and R. Brent. 2005. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 7059 (2005), 699--706. DOI: http://dx.doi.org/10.1038/nature03998Google ScholarGoogle ScholarCross RefCross Ref
  6. M. Elowitz, A. Levine, E. Siggia, and P. Swain. 2002. Stochastic gene expression in a single cell. Science 297, 5584 (2002), 1183--1186. DOI: http://dx.doi.org/10.1126/science.1070919Google ScholarGoogle Scholar
  7. S. Engblom. 2006. Computing the moments of high dimensional solutions of the master equation. Applied Mathematics and Computation 180, 2 (2006), 498--515. DOI: http://dx.doi.org/10.1016/j.amc.2005.12.032Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Franceschini and S. Macchietto. 2008. Model-based design of experiments for parameter precision: State of the art. Chemical Engineering Science 63, 19 (2008), 4846--4872. DOI: http://dx.doi.org/10.1016/j.ces.2007.11.034Google ScholarGoogle ScholarCross RefCross Ref
  9. D. Gillespie. 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 4 (1976), 403--434. DOI: http://dx.doi.org/10.1016/0021-9991(76)90041-3Google ScholarGoogle ScholarCross RefCross Ref
  10. D. Gillespie. 1992. A rigorous derivation of the chemical master equation. Physica A 188, 1--3 (1992), 404--425. DOI: http://dx.doi.org/10.1016/0378-4371(92)90283-vGoogle ScholarGoogle ScholarCross RefCross Ref
  11. A. Gonzalez, J. Uhlendorf, J. Schaul, E. Cinquemani, G. Batt, and G. Ferrari-Trecate. 2013. Identification of biological models from single-cell data: A comparison between mixed-effects and moment-based inference. In Proceedings of the 12th European Control Conference.Google ScholarGoogle Scholar
  12. J. Goutsias and G. Jenkinson. 2013. Markovian dynamics on complex reaction networks. Physics Reports 529 (2013), 199--264. DOI: http://dx.doi.org/doi:10.1016/j.physrep.2013.03.004Google ScholarGoogle ScholarCross RefCross Ref
  13. C. Guet, A. Gupta, T. A. Henzinger, M. Mateescu, and A. Sezgin. 2012. Delayed continuous-time Markov chains for genetic regulatory circuits. In Proceedings of the 24th International Conference on Computer Aided Verification (CAV’12). 294--309. DOI: http://dx.doi.org/10.1007/978-3-642-31424-7_24 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Hagen, J. White, and B. Tidor. 2013. Convergence in parameters and predictions using computational experimental design. Interface Focus 3 (2013), 20130008. DOI: http://dx.doi.org/10.1098/rsfs.2013.0008Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Hasenauer, V. Wolf, A. Kazeroonian, and F. Theis. 2014. Method of conditional moments (MCM) for the chemical master equation. Journal of Mathematical Biology 69, 3 (2013), 687--735. DOI: http://dx.doi.org/10.1007/s00285-013-0711-5Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Hasty, J. Pradines, M. Dolnik, and J. Collins. 2000. Noise-based switches and amplifiers for gene expression. Proceedings of the National Academy of Sciences of the U.S.A. 97, 5 (2000), 2075--2080. DOI: http://dx.doi.org/10.1073/pnas.040411297Google ScholarGoogle ScholarCross RefCross Ref
  17. T. A. Henzinger, L. Mikeev, M. Mateescu, and V. Wolf. 2010. Hybrid numerical solution of the chemical master equation. Proceedings of the 8th International Conference on Computational Methods in Systems Biology (CMSB’10). ACM, New York, 55--65. DOI: http://dx.doi.org/10.1145/1839764.1839772 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Hespanha. 2006. StochDynTools - A MATLAB toolbox to compute moment dynamics for stochastic networks of bio-chemical reactions. Available at http://www.ece.ucsb.edu/∼hespanha/software.Google ScholarGoogle Scholar
  19. J. Hespanha. 2008. Moment closure for biochemical networks. In Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing. 142--147. DOI: http://dx.doi.org/10.1109/ISCCSP.2008.4537208Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward. 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS) 31, 3 (2005), 363--396. DOI: http://dx.doi.org/10.1145/1089014.1089020 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Hjartarson, J. Ruess, and J. Lygeros. 2013. Approximating the solution of the chemical master equation by combining finite state projection and stochastic simulation. In Proceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC’13).Google ScholarGoogle Scholar
  22. W. Hunter, W. Hill, and T. Henson. 1969. Designing experiments for precise estimation of all or some of the constants in a mechanistic model. Canadian Journal of Chemical Engineering 47, 1 (1969), 76--80. DOI: http://dx.doi.org/10.1002/cjce.5450470114Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Ko, Y. Yamada, D. Welsh, E. Buhr, A. Liu, E. Zhang, M. Ralph, S. Kay, D. Forger, and J. Takahashi. 2010. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biology 8 (2010), e1000513. DOI: http://dx.doi.org/10.1371/journal.pbio.1000513Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Komorowski, M. Costa, D. Rand, and M. Stumpf. 2011. Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proceedings of the National Academy of Sciences of the U.S.A. 108, 21 (2011), 8645--8650. DOI: http://dx.doi.org/10.1073/pnas.1015814108Google ScholarGoogle ScholarCross RefCross Ref
  25. P. Kügler. 2012. Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS ONE 7, 8 (2012), e43001. DOI: http://dx.doi.org/10.1371/journal.pone.0043001Google ScholarGoogle ScholarCross RefCross Ref
  26. G. Lillacci and M. Khammash. 2013. The signal within the noise: Efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29, 18 (2013), 2311--2319. DOI: http://dx.doi.org/10.1093/bioinformatics/btt380Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Mateescu, V. Wolf, F. Didier, and T. A. Henzinger. 2010. Fast adaptive uniformisation of the chemical master equation. IET Systems Biology 4, 6 (2010), 441--452. DOI: http://dx.doi.org/10.1049/iet-syb.2010.0005Google ScholarGoogle ScholarCross RefCross Ref
  28. H. McAdams and A. Arkin. 1997. Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the U.S.A. 94, 3 (1997), 814--819.Google ScholarGoogle ScholarCross RefCross Ref
  29. F. Menolascina, M. di Bernardo, and D. di Bernardo. 2011. Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks. Automatica 47, 6 (2011), 1265--1270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. L. Mikeev and V. Wolf. 2012. Parameter estimation for stochastic hybrid models of biochemical reaction networks. In Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control. ACM, New York. (2012), 155--166. DOI: http://dx.doi.org/10.1145/2185632.2185657 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Milias-Argeitis, S. Summers, J. Stewart-Ornstein, I. Zuleta, D. Pincus, H. El-Samad, M. Khammash, and J. Lygeros. 2011. In silico feedback for in vivo regulation of a gene expression circuit. Nature Biotechnology 29 (2011), 1114--1116. DOI: http://dx.doi.org/10.1038/nbt.2018Google ScholarGoogle ScholarCross RefCross Ref
  32. B. Munsky and M. Khammash. 2006. The finite state projection algorithm for the solution of the chemical master equation. Journal of Chemical Physics 124 (2006), 044104. DOI: http://dx.doi.org/10.1063/1.2145882Google ScholarGoogle ScholarCross RefCross Ref
  33. B. Munsky, B. Trinh, and M. Khammash. 2009. Listening to the noise: Random fluctuations reveal gene network parameters. Molecular Systems Biology 5, 1 (2009), 318. DOI: http://dx.doi.org/10.1038/msb.2009.75Google ScholarGoogle ScholarCross RefCross Ref
  34. S. Poovathingal and R. Gunawan. 2010. Global parameter estimation methods for stochastic biochemical systems. BMC Bioinformatics 11, 1 (2010), 414--425. DOI: http://dx.doi.org/10.1186/1471-2105-11-414Google ScholarGoogle ScholarCross RefCross Ref
  35. L. Pronzato and E. Walter. 1985. Robust experimental design via stochastic approximation. Mathematical Biosciences 75 (1985), 103--120. DOI: http://dx.doi.org/10.1016/0025-5564(85)90068-9Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Raser and E. O’Shea. 2005. Noise in gene expression: Origins, consequences, and control. Science 309, 5743 (2005), 2010--2013. DOI: http://dx.doi.org/10.1126/science.1105891Google ScholarGoogle Scholar
  37. J. Ruess and J. Lygeros. 2013. Identifying stochastic biochemical networks from single-cell population experiments: A comparison of approaches based on the Fisher information. In Proceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC’13).Google ScholarGoogle Scholar
  38. J. Ruess, A. Milias-Argeitis, and J. Lygeros. 2013. Designing experiments to understand the variability in biochemical reaction networks. Journal of the Royal Society Interface 10, 88 (2013), 20130588. DOI: http://dx.doi.org/10.1098/rsif.2013.0588Google ScholarGoogle ScholarCross RefCross Ref
  39. J. Ruess, A. Milias-Argeitis, S. Summers, and J. Lygeros. 2011. Moment estimation for chemically reacting systems by extended Kalman filtering. Journal of Chemical Physics 135 (2011), 165102. DOI: http://dx.doi.org/10.1063/1.3654135Google ScholarGoogle ScholarCross RefCross Ref
  40. M. Samoilov and A. Arkin. 2006. Deviant effects in molecular reaction pathways. Nature Biotechnology 24, 10 (2006), 1235--1240. DOI: http://dx.doi.org/10.1038/nbt1253Google ScholarGoogle ScholarCross RefCross Ref
  41. V. Shahrezaei, J. Ollivier, and P. Swain. 2008. Colored extrinsic fluctuations and stochastic gene expression. Molecular Systems Biology 4, 196 (2008). DOI: http://dx.doi.org/10.1038/msb.2008.31Google ScholarGoogle Scholar
  42. A. Singh and J. Hespanha. 2006. Lognormal moment closures for biochemical reactions. In Proceedings of the IEEE 45th Annual Conference on Decision and Control (CDC’06). 2063--2068. DOI: http://dx. doi.org/10.1109/CDC.2006.376994Google ScholarGoogle Scholar
  43. A. Singh and J. Hespanha. 2011. Approximate moment dynamics for chemically reacting systems. IEEE Transactions on Automatic Control 56, 2 (2011), 414--418. DOI: http://dx.doi.org/10.1109/TAC.2010. 2088631Google ScholarGoogle ScholarCross RefCross Ref
  44. T. Toni and B. Tidor. 2013. Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology. PLoS Computational Biology 9 (2013), 3. DOI: http://dx.doi.org/10.1371/journal.pcbi.1002960Google ScholarGoogle ScholarCross RefCross Ref
  45. J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt, and P. Hersen. 2012. Long-term model predictive control of gene expression at the population and single-cell levels. Proceedings of the National Academy of Sciences of the U.S.A. 109, 35 (2012), 14271--14276. DOI: http://dx.doi.org/10.1073/pnas.1206810109Google ScholarGoogle ScholarCross RefCross Ref
  46. D. Volfson, J. Marciniak, W. Blake, N. Ostroff, L. Tsimring, and J. Hasty. 2005. Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 7078 (2005), 861--864. DOI: http://dx.doi.org/10.1038/nature04281Google ScholarGoogle ScholarCross RefCross Ref
  47. E. Walter and L. Pronzato. 1990. Qualitative and quantitative experiment design for phenomenological models—a survey. Automatica 26, 2 (1990), 195--213. DOI: http://dx.doi.org/10.1016/0005- 1098(90)90116-Y Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. P. Whittle. 1957. On the use of the normal approximation in the treatment of stochastic processes. Journal of the Royal Statistical Society Series B Statistical Methodology 19 (1957), 268--281.Google ScholarGoogle ScholarCross RefCross Ref
  49. V. Wolf, R. Goel, M. Mateescu, and T. A. Henzinger. 2010. Solving the chemical master equation using sliding windows. BMC Systems Biology 4 (2010), 42. DOI: http://dx.doi.org/10.1186/1752-0509-4-42Google ScholarGoogle ScholarCross RefCross Ref
  50. C. Zechner, J. Ruess, P. Krenn, S. Pelet, M. Peter, J. Lygeros, and H. Koeppl. 2012. Moment-based inference predicts bimodality in transient gene expression. Proceedings of the National Academy of Sciences of the U.S.A. 109, 21 (2012), 8340--8345. DOI: http://dx.doi.org/10.1073/pnas.1200161109Google ScholarGoogle ScholarCross RefCross Ref
  51. C. Zechner, M. Unger, S. Pelet, M. Peter, and H. Koeppl. 2014. Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nature Methods 11, 2 (2014), 197--202. DOI: http://dx.doi.org/10.1038/nmeth.2794Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Moment-Based Methods for Parameter Inference and Experiment Design for Stochastic Biochemical Reaction Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 25, Issue 2
      Special Issue on Computational Methods in Systems Biology
      April 2015
      161 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/2737798
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 February 2015
      • Accepted: 1 July 2014
      • Revised: 1 June 2014
      • Received: 1 January 2014
      Published in tomacs Volume 25, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader