skip to main content
interview

Exponential Lower Bounds for Polytopes in Combinatorial Optimization

Published:06 May 2015Publication History
Skip Abstract Section

Abstract

We solve a 20-year old problem posed by Yannakakis and prove that no polynomial-size linear program (LP) exists whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.

Skip Supplemental Material Section

Supplemental Material

References

  1. S. Aaronson. 2006. Lower bounds for local search by quantum arguments. SIAM J. Comput. 35, 4, 804--824. (Earlier version in STOC'04). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Aharonov and O. Regev. 2004. Lattice problems in NP ∩ coNP. In Proceedings of FOCS 2004. 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arora, B. Bollobás, and L. Lovász. 2002. Proving integrality gaps without knowing the linear program. In Proceedings of FOCS 2002. 313--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. 2006. Proving integrality gaps without knowing the linear program. Theory Comput. 2, 19--51.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. Avis and H. R. Tiwary. 2013. On the Extension Complexity of Combinatorial Polytopes. In Proceedings of ICALP(1) 2013. 57--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. E. Balas. 1985. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algeb. Disc. Meth. 6, 466--486.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Balas, S. Ceria, and G. Cornuéjols. 1993. A lift-and-project algorithm for mixed 0-1 programs. Math. Prog. 58, 295--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Benabbas and A. Magen. 2010. Extending SDP integrality gaps to Sherali-Adams with applications to quadratic programming and MaxCutGain. In Proceedings of IPCO 2010. 299--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. 2012. Approximation limits of linear programs (beyond hierarchies). In Proceedings of FOCS 2012. 480--489. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Braun, S. Fiorini, and S. Pokutta. 2013a. Average case polyhedral complexity of the maximum stable set problem. arXiv:1311.4001.Google ScholarGoogle Scholar
  11. G. Braun, R. Jain, T. Lee, and S. Pokutta. 2013b. Information-theoretic approximations of the nonnegative rank. ECCC Report no. 158 (2013).Google ScholarGoogle Scholar
  12. G. Braun and S. Pokutta. 2013. Common information and unique disjointness. In Proceedings of FOCS 2013. 688--697. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Braverman and A. Moitra. 2013. An information complexity approach to extended formulations. In Proceedings of STOC 2013. 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Briët, D. Dadush, and S. Pokutta. 2013. On the existence of 0/1 polytopes with high semidefinite extension complexity. In Algorithms ESA 2013, Lecture Notes in Computer Science, vol. 8125, Springer, 217--228.Google ScholarGoogle Scholar
  15. H. Buhrman, R. Cleve, S. Massar, and R. de Wolf. 2010. Nonlocality and communication complexity. Rev. Modern Phys. 82, 665.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. 2006. Rank bounds and integrality gaps for cutting planes procedures. Theory Comput. 2, 65--90.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. 2013. Approximate Constraint Satisfaction Requires Large LP Relaxations. In Proceedings of FOCS 2013, 350--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Charikar, K. Makarychev, and Y. Makarychev. 2009. Integrality gaps for Sherali-Adams relaxations. In Proceedings of STOC 2009. 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Conforti, G. Cornuéjols, and G. Zambelli. 2010. Extended formulations in combinatorial optimization. 4OR 8, 1--48.Google ScholarGoogle Scholar
  20. G. B. Dantzig. 1951. Maximization of a linear function of variables subject to linear inequalities. In Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons Inc., New York, 339--347.Google ScholarGoogle Scholar
  21. C. De Simone. 1990. The cut polytope and the Boolean quadric polytope. Disc. Math. 79, 71--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. M. Deza and M. Laurent. 1997. Geometry of Cuts and Metrics. Algorithms and Combinatorics Series, vol. 15, Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Drucker and R. de Wolf. 2011. Quantum proofs for classical theorems. Theory Comput. Graduate Surveys 2.Google ScholarGoogle Scholar
  24. Y. Faenza, S. Fiorini, R. Grappe, and H. R. Tiwary. 2011. Extended formulations, non-negative factorizations and randomized communication protocols. arXiv:1105.4127.Google ScholarGoogle Scholar
  25. H. Fawzi and P. A. Parrilo. 2013. Exponential lower bounds on fixed-size PSD rank and semidefinite extension complexity. arXiv:1311.2571.Google ScholarGoogle Scholar
  26. W. Fernandez de la Vega and C. Mathieu. 2007. Linear programming relaxation of Maxcut. In Proceedings of SODA 2007. 53--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Fiorini, V. Kaibel, K. Pashkovich, and D. O. Theis. 2011. Combinatorial bounds on nonnegative rank and extended formulations. arXiv:1111.0444.Google ScholarGoogle Scholar
  28. S. Fiorini, S. Massar, M. K. Patra, and H. R. Tiwary. 2013. Generalised probabilistic theories and conic extensions of polytopes. CoRR abs/1310.4125.Google ScholarGoogle Scholar
  29. K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis. 2010. Integrality gaps of 2&mins;o(1) for vertex cover SDPs in the Lovász-Schrijver hierarchy. SIAM J. Comput. 39, 3553--3570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Georgiou, A. Magen, and M. Tulsiani. 2009. Optimal Sherali-Adams gaps from pairwise independence. In Proceedings of APPROX-RANDOM 2009. 125--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. X. Goemans and D. P. Williamson. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115--1145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Gouveia, P. A. Parrilo, and R. R. Thomas. 2010. Theta bodies for polynomial ideals. SIAM J. Optim. 20, 2097--2118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Gouveia, P. A. Parrilo, and R. R. Thomas. 2013. Lifts of convex sets and cone factorizations. Math. Oper. Res.38, 2, 248--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Håstad. 1999. Clique is Hard to Approximate within n1&mins;ε. Acta Math. 182, 105--142. (Earlier version in Proceedings of FOCS 1996.)Google ScholarGoogle ScholarCross RefCross Ref
  35. H. Huang and B. Sudakov. 2012. A counterexample to the Alon-Saks-Seymour conjecture and related problems. Combinatorica32, 2, 205--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Jain, Y. Shi, Z. Wei, and S. Zhang. 2013. Efficient protocols for generating bipartite classical distributions and quantum states. IEEE Trans. Inf. Theory59, 8, 5171--5178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. V. Kaibel. 2011. Extended formulations in combinatorial optimization. Optima 85, 2--7.Google ScholarGoogle Scholar
  38. V. Kaibel, K. Pashkovich, and D. O. Theis. 2010. Symmetry matters for the sizes of extended formulations. In Proceedings of IPCO 2010. 135--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. V. Kaibel and S. Weltge. 2013. A short proof that the extension complexity of the correlation polytope grows exponentially. Discrete Computa. Geom. 53, 2, 396--401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. N. Karmarkar. 1984. A new polynomial time algorithm for linear programming. Combinatorica 4, 373--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. I. Kerenidis and R. de Wolf. 2004. Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci. 69, 3, 395--420. (Earlier version in STOC 2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. L. G. Khachiyan. 1979. A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR244, 5, 1093--1096.Google ScholarGoogle Scholar
  43. S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. 2007. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput.37, 1, 319--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. H. Klauck, T. Lee, and S. Zhang. 2011. An explicit and exponential separation between randomized and quantum correlation complexities. Unpublished manuscript from Oct/Nov 2011. Personal communication between Troy Lee and Ronald de Wolf, December 2011 at Centre for Quantum Technologies, Singapore.Google ScholarGoogle Scholar
  45. E. Kushilevitz and N. Nisan. 1997. Communication Complexity. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. E. Kushilevitz and E. Weinreb. 2009a. The communication complexity of set-disjointness with small sets and 0-1 intersection. In Proceedings of FOCS 2009. 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. E. Kushilevitz and E. Weinreb. 2009b. On the complexity of communication complexity. In Proceedings of STOC 2009. 465--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. J. R. Lee, P. Raghavendra, and D. Steurer. 2015. Lower bounds on the size of semidefinite programming relaxations. In Proceedings of STOC 2015.Google ScholarGoogle Scholar
  49. T. Lee and D. O. Theis. 2012. Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix. arXiv:1203.3961.Google ScholarGoogle Scholar
  50. L. Lovász. 1979. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. L. Lovász. 2003. Semidefinite programs and combinatorial optimization. In Recent Advances in Algorithms and Combinatorics. CMS Books Math./Ouvrages Math, SMC Series, vol. 11, Springer, 137--194.Google ScholarGoogle Scholar
  52. L. Lovász and M. Saks. 1993. Communication complexity and combinatorial lattice theory. J. Comput. Syst. Sci. 47, 322--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. L. Lovász and A. Schrijver. 1991. Cones of matrices and set-functions and 0&mins;1 optimization. SIAM J. Optim. 1, 166--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. N. D. Mermin. 2007. Quantum Computer Science: An Introduction. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. A. Nielsen and I. L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. K. Pashkovich. 2009. Symmetry in extended formulations of the permutahedron. arXiv:0912.3446.Google ScholarGoogle Scholar
  57. S. Pokutta and M. Van Vyve. 2013. A note on the extension complexity of the knapsack polytope. Oper. Res. Lett.41, 4, 347--350.Google ScholarGoogle ScholarCross RefCross Ref
  58. A. A. Razborov. 1992. On the distributional complexity of disjointness. Theoret. Comput. Sci.106, 2, 385--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. T. Rothvoss. 2011. Some 0/1 polytopes need exponential size extended formulations. arXiv:1105.0036.Google ScholarGoogle Scholar
  60. T. Rothvoss. 2014. The matching polytope has exponential extension complexity. In Proceedings of STOC 2014. 263--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. G. Schoenebeck, L. Trevisan, and M. Tulsiani. 2007. Tight integrality gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut. In Proceedings of STOC 2007. 302--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. A. Schrijver. 2003. Combinatorial Optimization. Polyhedra and Efficiency. Springer-Verlag.Google ScholarGoogle Scholar
  63. C. E. Shannon. 1949. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 25, 59--98.Google ScholarGoogle ScholarCross RefCross Ref
  64. H. D. Sherali and W. P. Adams. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Disc. Math. 3, 411--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. M. Sipser. 1996. Introduction to the Theory of Computation. PWS, Boston, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. E. R. Swart. 1986; revision 1987. P = NP. Tech. rep., University of Guelph.Google ScholarGoogle Scholar
  67. F. Vanderbeck and L. A. Wolsey. 2010. Reformulation and decomposition of integer programs. In 50 Years of Integer Programming 1958-2008, M. Jünger, Th, M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds., Springer, 431--502.Google ScholarGoogle Scholar
  68. R. de Wolf. 2002. Quantum communication and complexity. Theoret. Comput. Sci. 287, 337--353. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. R. de Wolf. 2003. Nondeterministic quantum query and communication complexities. SIAM J. Comput. 32, 681--699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. L. A. Wolsey. 2011. Using extended formulations in practice. Optima 85, 7--9.Google ScholarGoogle Scholar
  71. M. Yannakakis. 1988. Expressing combinatorial optimization problems by linear programs (extended abstract). In Proceedings of STOC 1988. 223--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. Yannakakis. 1991. Expressing combinatorial optimization problems by linear programs. J. Comput. System Sci.43, 3, 441--466.Google ScholarGoogle ScholarCross RefCross Ref
  73. G. M. Ziegler. 1995. Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer-Verlag.Google ScholarGoogle Scholar

Index Terms

  1. Exponential Lower Bounds for Polytopes in Combinatorial Optimization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 62, Issue 2
        May 2015
        304 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/2772377
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 May 2015
        • Accepted: 1 January 2015
        • Revised: 1 November 2013
        • Received: 1 July 2012
        Published in jacm Volume 62, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • interview
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader