skip to main content
research-article

On the Complexity of Probabilistic Abstract Argumentation Frameworks

Published:02 June 2015Publication History
Skip Abstract Section

Abstract

Probabilistic abstract argumentation combines Dung’s abstract argumentation framework with probability theory in order to model uncertainty in argumentation. In this setting, we address the fundamental problem of computing the probability that a set of arguments is an extension according to a given semantics. We focus on the most popular semantics (i.e., admissible, stable, complete, grounded, preferred, ideal-set, ideal, stage, and semistable) and show the following dichotomy result: computing the probability that a set of arguments is an extension is either FP or FP#P-complete depending on the semantics adopted. Our polynomial-time results are particularly interesting, as they hold for some semantics for which no polynomial-time technique was known so far.

References

  1. Teresa Alsinet, Carlos Iván Chesñevar, Lluis Godo, Sandra Sandri, and Guillermo Ricardo Simari. 2008a. Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification. Int. J. Approx. Reasoning 48, 3 (2008), 711--729. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Teresa Alsinet, Carlos Iván Chesñevar, Lluis Godo, and Guillermo Ricardo Simari. 2008b. A logic programming framework for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets Syst. 159, 10 (2008), 1208--1228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Leila Amgoud and Claudette Cayrol. 2002. A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34, 1--3 (2002), 197--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Leila Amgoud and Henri Prade. 2004. Reaching agreement through argumentation: A possibilistic approach. In Principles of Knowledge Representation and Reasoning (KR). 175--182.Google ScholarGoogle Scholar
  5. Leila Amgoud and Srdjan Vesic. 2011. A new approach for preference-based argumentation frameworks. Ann. Math. Artif. Intell. 63, 2 (2011), 149--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. 2011. An introduction to argumentation semantics. Knowl. Eng. Rev. 26, 4 (2011), 365--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Pietro Baroni and Massimiliano Giacomin. 2009. Semantics of abstract argument systems. In Argumentation in Artificial Intelligence. 25--44.Google ScholarGoogle Scholar
  8. Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. 2005. SCC-recursiveness: A general schema for argumentation semantics. Artif. Intell. 168, 1--2 (2005), 162--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Trevor J. M. Bench-Capon. 2003. Persuasion in practical argument using value-based argumentation frameworks. J. Log. Comput. 13, 3 (2003), 429--448.Google ScholarGoogle ScholarCross RefCross Ref
  10. Trevor J. M. Bench-Capon and Paul E. Dunne. 2007. Argumentation in artificial intelligence. Artif. Intell. 171, 10--15 (2007), 619--641. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Philippe Besnard and Anthony Hunter (Eds.). 2008. Elements of Argumentation. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Martin Caminada. 2006. Semi-stable semantics. In Computational Models of Argument (COMMA). 121--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Martin W. A. Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. 2012. Semi-stable semantics. J. Log. Comput. 22, 5 (2012), 1207--1254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. 2005. Prudent semantics for argumentation frameworks. In International Conference on Tools with Artificial Intelligence (ICTAI). 568--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Sylvie Coste-Marquis, Sébastien Konieczny, Pierre Marquis, and Mohand Akli Ouali. 2012. Weighted attacks in argumentation frameworks. In Principles of Knowledge Representation and Reasoning (KR). 593--597.Google ScholarGoogle Scholar
  16. P. M. Dung, R. A. Kowalski, and F. Toni. 2009. Assumption-based argumentation. In Argumentation in Artificial Intelligence. 199--218.Google ScholarGoogle Scholar
  17. Phan Minh Dung. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 2 (1995), 321--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Phan Minh Dung, Paolo Mancarella, and Francesca Toni. 2007. Computing ideal sceptical argumentation. Artif. Intell. 171, 10--15 (2007), 642--674. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Phan Minh Dung and Phan Minh Thang. 2010. Towards (probabilistic) argumentation for jury-based dispute resolution. In Computational Models of Argument (COMMA). 171--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Paul E. Dunne. 2009. The computational complexity of ideal semantics. Artif. Intell. 173, 18 (2009), 1559--1591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael Wooldridge. 2011. Weighted argument systems: Basic definitions, algorithms, and complexity results. Artif. Intell. 175, 2 (2011), 457--486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Paul E. Dunne and Michael Wooldridge. 2009. Complexity of abstract argumentation. In Argumentation in Artificial Intelligence. 85--104.Google ScholarGoogle Scholar
  23. Wolfgang Dvorák. 2012. Computational Aspects of Abstract Argumentation. Ph.D. Dissertation. Technische Universität Wien.Google ScholarGoogle Scholar
  24. Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran. 2014. Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206 (2014), 53--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wolfgang Dvorák and Stefan Woltran. 2010. Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110, 11 (2010), 425--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Thomas Eiter and Georg Gottlob. 1997. The complexity class Θp2 : Recent results and applications in AI and modal logic. In Fundamentals of Computation Theory, Bogdan S. Chlebus and Ludwik Czaja (Eds.). Lecture Notes in Computer Science, Vol. 1279. Springer, Berlin, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. 2013a. Efficiently estimating the probability of extensions in abstract argumentation. In International Conference on Scalable Uncertainty Management (SUM). 106--119.Google ScholarGoogle ScholarCross RefCross Ref
  28. Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. 2013b. On the complexity of probabilistic abstract argumentation. In International Joint Conference on Artificial Intelligence (IJCAI). 898--904. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Ferrara, G. Pan, and M. Y. Vardi. 2005. Treewidth in verification: Local vs. global. In International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). 489--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sergio Flesca, Filippo Furfaro, and Francesco Parisi. 2014. Consistency checking and querying in probabilistic databases under integrity constraints. J. Comput. Syst. Sci. 80, 7 (2014), 1448--1489.Google ScholarGoogle ScholarCross RefCross Ref
  31. Sarah Alice Gaggl and Stefan Woltran. 2013. The cf2 argumentation semantics revisited. J. Log. Comput. 23, 5 (2013), 925--949.Google ScholarGoogle ScholarCross RefCross Ref
  32. Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Davide Grossi and Wiebe van der Hoek. 2013. Audience-based uncertainty in abstract argument games. In International Joint Conference on Artificial Intelligence (IJCAI). 143--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Haenni, B. Anrig, J. Kohlas, and N. Lehmann. 2001. A survey on probabilistic argumentation. In ECSQARU Workshop: Adventures in Argumentation. 19--25.Google ScholarGoogle Scholar
  35. R. Haenni, J. Kohlas, and N. Lehmann. 2000. Probabilistic argumentation systems. In Handbook of Defeasible Reasoning and Uncertainty Management Systems, Volume 5: Algorithms for Uncertainty and Defeasible Reasoning. Kluwer, 221--288.Google ScholarGoogle Scholar
  36. Anthony Hunter. 2012. Some foundations for probabilistic abstract argumentation. In Computational Models of Argument (COMMA). 117--128.Google ScholarGoogle Scholar
  37. Anthony Hunter. 2013a. Modelling uncertainty in persuasion. In International Conference on the Scalable Uncertainty Management (SUM). 57--70.Google ScholarGoogle ScholarCross RefCross Ref
  38. Anthony Hunter. 2013b. A probabilistic approach to modelling uncertain logical arguments. Int. J. Approx. Reasoning 54, 1 (2013), 47--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Anthony Hunter. 2014. Probabilistic qualification of attack in abstract argumentation. Int. J. Approx. Reasoning 55, 2 (2014), 607--638. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Abhay Kumar Jha and Dan Suciu. 2013. Knowledge compilation meets database theory: Compiling queries to decision diagrams. Theory Comput. Syst. 52, 3 (2013), 403--440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Eun Jung Kim, Sebastian Ordyniak, and Stefan Szeider. 2011. Algorithms and complexity results for persuasive argumentation. Artif. Intell. 175, 9--10 (2011), 1722--1736. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Hengfei Li, Nir Oren, and Timothy J. Norman. 2011. Probabilistic argumentation frameworks. In Theorie and Applications of Formal Argumentation (TAFA). 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Hengfei Li, Nir Oren, and Timothy J. Norman. 2013. Relaxing independence assumptions in probabilistic argumentation. In Workshop on Argumentation in Multi-Agent Systems (ArgMAS).Google ScholarGoogle Scholar
  44. T. Lukasiewicz. 1999. Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res. (JAIR) 10 (1999), 199--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. T. Lukasiewicz. 2001. Probabilistic logic programming with conditional constraints. ACM Trans. Comput. Logic 2, 3 (2001), 289--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Thomas Lukasiewicz. 2007. Probabilistic description logic programs. Int. J. Approx. Reasoning 45, 2 (2007), 288--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Diego C. Martínez, Alejandro Javier García, and Guillermo Ricardo Simari. 2008. An abstract argumentation framework with varied-strength attacks. In Principles of Knowledge Representation and Reasoning (KR). 135--144.Google ScholarGoogle Scholar
  48. C. Meinel and T. Theobald. 1998. Algorithms and Data Structures in VLSI Design. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Sanjay Modgil. 2009. Reasoning about preferences in argumentation frameworks. Artif. Intell. 173, 9--10 (2009), 901--934. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. R. T. Ng and V. S. Subrahmanian. 1992. Probabilistic logic programming. Inf. Comput. 101, 2 (1992), 150--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Juan Carlos Nieves and Roberto Confalonieri. 2011. A possibilistic argumentation decision making framework with default reasoning. Fundam. Inform. 113, 1 (2011), 41--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Nir Oren and Timothy J. Norman. 2008. Semantics for evidence-based argumentation. In Computational Models of Argument (COMMA). 276--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Mauricio Osorio and Juan Carlos Nieves. 2009. Possibilistic well-founded semantics. In Advances in Artificial Intelligence, International Conference on Artificial Intelligence (MICAI). 15--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. C. M. Papadimitriou. 1994. Computational Complexity. Addison-Wesley.Google ScholarGoogle Scholar
  55. David Poole. 1997. The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94, 1--2 (1997), 7--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Henry Prakken. 2010. An abstract framework for argumentation with structured arguments. Argument Comput 1, 2 (2010), 93--124.Google ScholarGoogle ScholarCross RefCross Ref
  57. Iyad Rahwan and Guillermo R. Simari (Eds.). 2009. Argumentation in Artificial Intelligence. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Tjitze Rienstra. 2012. Towards a probabilistic dung-style argumentation system. In International Conference on Agreement Technologies (AT). 138--152.Google ScholarGoogle Scholar
  59. Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan & Claypool. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Matthias Thimm. 2012. A probabilistic semantics for abstract argumentation. In European Conference on Artificial Intelligence (ECAI). 750--755.Google ScholarGoogle Scholar
  61. Seinosuke Toda and Osamu Watanabe. 1992. Polynomial time 1-turing reductions from #PH to #P. Theor. Comput. Sci. 100, 1 (1992), 205--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Leslie G. Valiant. 1979. The complexity of computing the permanent. Theor. Comput. Sci. 8 (1979), 189--201.Google ScholarGoogle ScholarCross RefCross Ref
  63. Bart Verheij. 1996. Two approaches to dialectical argumentation: Admissible sets and argumentation stages. In International Conference on Formal and Applied Practical Reasoning Workshop (FAPR). 357--368.Google ScholarGoogle Scholar

Index Terms

  1. On the Complexity of Probabilistic Abstract Argumentation Frameworks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Computational Logic
          ACM Transactions on Computational Logic  Volume 16, Issue 3
          July 2015
          285 pages
          ISSN:1529-3785
          EISSN:1557-945X
          DOI:10.1145/2764956
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 June 2015
          • Accepted: 1 March 2015
          • Revised: 1 January 2015
          • Received: 1 May 2014
          Published in tocl Volume 16, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader