skip to main content
research-article

Trajectory similarity measures

Published:20 May 2015Publication History
Skip Abstract Section

Abstract

Storing, querying, and analyzing trajectories is becoming increasingly important, as the availability and volumes of trajectory data increases. One important class of trajectory analysis is computing trajectory similarity. This paper introduces and compares four of the most common measures of trajectory similarity: longest common subsequence (LCSS), Fréchet distance, dynamic time warping (DTW), and edit distance. These four measures have been implemented in a new open source R package, freely available on CRAN [19]. The paper highlights some of the differences between these four similarity measures, using real trajectory data, in addition to indicating some of the important emerging applications for measurement of trajectory similarity.

References

  1. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications, 5(01n02):75--91, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  2. D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In KDD workshop, volume 10, pages 359--370. Seattle, WA, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting patterns by clustering subtrajectories. In S.-H. Hong, H. Nagamochi, and T. Fukunaga, editors, Algorithms and Computation, volume 5369 of Lecture Notes in Computer Science, pages 644--655. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Buchin, S. Dodge, and B. Speckmann. Similarity of trajectories taking into account geographic context. Journal of Spatial Information Science, 9(1):101--124, 2014.Google ScholarGoogle Scholar
  5. L. Chen and R. Ng. On the marriage of lp-norms and edit distance. In Proc. 30th International Conference on Very Large Data Bases, pages 792--803, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving object trajectories. In Proc. ACM SIGMOD International Conference on Management of Data, SIGMOD '05, pages 491--502, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Dodge. Exploring Movement Using Similarity Analysis. PhD thesis, Universität Zürich, 2011.Google ScholarGoogle Scholar
  8. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. SIGMOD Rec., 23(2):419--429, May 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22(1):1--72, 1906.Google ScholarGoogle Scholar
  10. J. Gudmundsson, P. Laube, and T. Wolle. Movement patterns in spatiotemporal data. In Encyclopedia of GIS, pages 726--732. Springer US, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Gudmundsson, P. Laube, and T. Wolle. Computational movement analysis. In Springer handbook of geographic information, pages 423--438. Springer, 2012.Google ScholarGoogle Scholar
  12. J. Haase and U. Brefeld. Finding similar movements in positional data streams. In Proc. ECML/PKDD Workshop on Machine Learning and Data Mining for Sports Analytics, 2013.Google ScholarGoogle Scholar
  13. E. Keogh and M. Pazzani. Scaling up dynamic time warping for datamining applications. In Proc. 6th ACM International Conference on Knowledge Discovery and Data Mining, pages 285--289, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and Information Systems, 7(3):358--386, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Laube and R. S. Purves. How fast is a cow? Cross-scale analysis of movement data. Transactions in GIS, 15(3):401--418, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  16. T. Li, H. Chang, M. Wang, B. Ni, R. Hong, and S. Yan. Crowded scene analysis: A survey. IEEE Transactions on Circuits and Systems for Video Technology, (99):1--20, 2014.Google ScholarGoogle Scholar
  17. M. Perše, M. Kristan, S. Kovačič, G. Vučkovič, and J. Perš. A trajectory-based analysis of coordinated team activity in a basketball game. Computer Vision and Image Understanding, 113(5):612--621, 2009. Computer Vision Based Analysis in Sport Environments. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Ranacher and K. Tzavella. How to compare movement? A review of physical movement similarity measures in geographic information science and beyond. Cartography and Geographic Information Science, 41(3):286--307, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  19. K. Toohey. SimilarityMeasures: Trajectory Similarity Measures, 2015. R package version 1.4, http://CRAN.R-project.org/package=SimilarityMeasures.Google ScholarGoogle Scholar
  20. M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajectories. In Proc. 18th International Conference on Data Engineering (ICDE), pages 673--684, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Wang, H. Su, K. Zheng, S. Sadiq, and X. Zhou. An effectiveness study on trajectory similarity measures. In Proc. 24th Australasian Database Conference, volume 137, pages 13--22, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Yuan. Image-based gesture recognition with support vector machines. ProQuest, 2008.Google ScholarGoogle Scholar
  23. Z. Zhang, K. Huang, and T. Tan. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In Proc. 18th International Conference on Pattern Recognition (ICPR), volume 3, pages 1135--1138, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Trajectory similarity measures

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image SIGSPATIAL Special
            SIGSPATIAL Special  Volume 7, Issue 1
            March 2015
            72 pages
            EISSN:1946-7729
            DOI:10.1145/2782759
            Issue’s Table of Contents

            Copyright © 2015 Authors

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 20 May 2015

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader