skip to main content
10.1145/2872427.2882993acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article
Public Access

Do Cascades Recur?

Published:11 April 2016Publication History

ABSTRACT

Cascades of information-sharing are a primary mechanism by which content reaches its audience on social media, and an active line of research has studied how such cascades, which form as content is reshared from person to person, develop and subside. In this paper, we perform a large-scale analysis of cascades on Facebook over significantly longer time scales, and find that a more complex picture emerges, in which many large cascades recur, exhibiting multiple bursts of popularity with periods of quiescence in between. We characterize recurrence by measuring the time elapsed between bursts, their overlap and proximity in the social network, and the diversity in the demographics of individuals participating in each peak. We discover that content virality, as revealed by its initial popularity, is a main driver of recurrence, with the availability of multiple copies of that content helping to spark new bursts. Still, beyond a certain popularity of content, the rate of recurrence drops as cascades start exhausting the population of interested individuals. We reproduce these observed patterns in a simple model of content recurrence simulated on a real social network. Using only characteristics of a cascade's initial burst, we demonstrate strong performance in predicting whether it will recur in the future.

References

  1. L. A. Adamic, T. M. Lento, E. Adar, and P. C. Ng. Information evolution in social networks. WSDM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Ahmed, S. Spagna, F. Huici, and S. Niccolini. A peek into the future: Predicting the evolution of popularity in user generated content. WSDM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, and P. Rohani. Seasonality and the dynamics of infectious diseases. Ecol. Lett., 2006. Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Asur, B. Huberman, et al. Predicting the future with social media. WI-IAT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Asur, B. Huberman, G. Szabo, and C. Wang. Trends in social media: Persistence and decay. ICWSM, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  6. N. T. Bailey et al. The mathematical theory of infectious diseases and its applications. 1975.Google ScholarGoogle Scholar
  7. E. Bakshy, I. Rosenn, C. Marlow, and L. A. Adamic. The role of social networks in information diffusion. WWW, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  9. C. Bauckhage, F. Hadiji, and K. Kersting. How viral are viral videos? ICWSM, 2015.Google ScholarGoogle Scholar
  10. C. Bauckhage, K. Kersting, and F. Hadiji. Mathematical models of fads explain the temporal dynamics of internet memes. ICWSM, 2013.Google ScholarGoogle Scholar
  11. Y. Borghol, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti. The untold story of the clones: content-agnostic factors that impact Youtube video popularity. KDD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti. Characterizing and modelling popularity of user-generated videos. Perform. Eval., 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Cha, F. Benevenuto, Y.-Y. Ahn, and K. P. Gummadi. Delayed information cascades in Flickr: Measurement, analysis, and modeling. Computer Networks, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Cheng, L. A. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? WWW, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Choi and H. Varian. Predicting the present with Google Trends. Econ. Rec., 2012. Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Coscia. Average is boring: How similarity kills a meme's success. Sci. Rep., 2014. Google ScholarGoogle ScholarCross RefCross Ref
  17. R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. PNAS, 2008. Google ScholarGoogle ScholarCross RefCross Ref
  18. M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 1973.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Friggeri, L. A. Adamic, D. Eckles, and J. Cheng. Rumor cascades. ICWSM, 2014.Google ScholarGoogle Scholar
  20. M. Girvan, D. S. Callaway, M. E. Newman, and S. H. Strogatz. Simple model of epidemics with pathogen mutation. Phys. Rev. E, 2002. Google ScholarGoogle ScholarCross RefCross Ref
  21. Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. CVPR, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Grinberg, M. Naaman, B. Shaw, and G. Lotan. Extracting diurnal patterns of real world activity from social media. ICWSM, 2013.Google ScholarGoogle Scholar
  23. D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. WWW, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Guille and H. Hacid. A predictive model for the temporal dynamics of information diffusion in online social networks. WWW Companion, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Johansen. A simple model of recurrent epidemics. J. Theor. Biol., 1996. Google ScholarGoogle ScholarCross RefCross Ref
  26. D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. VLDB, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Kleinberg. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov., 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the bursty evolution of blogspace. WWW, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Kuperman and G. Abramson. Small world effect in an epidemiological model. Phys. Rev. Lett., 2001. Google ScholarGoogle ScholarCross RefCross Ref
  31. S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang. Prominent features of rumor propagation in online social media. ICDM, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  32. H. Lakkaraju, J. J. McAuley, and J. Leskovec. What's in a name? understanding the interplay between titles, content, and communities in social media. ICWSM, 2013.Google ScholarGoogle Scholar
  33. J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the news cycle. KDD, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Leskovec, M. McGlohon, C. Faloutsos, N. S. Glance, and M. Hurst. Patterns of cascading behavior in large blog graphs. SDM, 2007. Google ScholarGoogle ScholarCross RefCross Ref
  35. D. Liben-Nowell and J. Kleinberg. Tracing information flow on a global scale using internet chain-letter data. PNAS, 2008. Google ScholarGoogle ScholarCross RefCross Ref
  36. Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information diffusion: model and implications. KDD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. A. Myers and J. Leskovec. The bursty dynamics of the twitter information network. WWW, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. KDD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. E. Newman. Spread of epidemic disease on networks. Phys. Rev. E, 2002. Google ScholarGoogle ScholarCross RefCross Ref
  40. L. F. Olsen, G. L. Truty, and W. M. Schaffer. Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol., 1988.Google ScholarGoogle ScholarCross RefCross Ref
  41. G. Palshikar et al. Simple algorithms for peak detection in time-series. ICADABAI, 2009.Google ScholarGoogle Scholar
  42. P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983. Google ScholarGoogle ScholarCross RefCross Ref
  43. B. H. Spitzberg. Toward a model of meme diffusion (M3D). Communication Theory, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  44. G. Stoddard. Popularity dynamics and intrinsic quality in reddit and hacker news. ICWSM, 2015.Google ScholarGoogle Scholar
  45. J. Verdasca, M. T. Da Gama, A. Nunes, N. Bernardino, J. Pacheco, and M. Gomes. Recurrent epidemics in small world networks. J. Theor. Biol., 2005. Google ScholarGoogle ScholarCross RefCross Ref
  46. L. Weng, A. Flammini, A. Vespignani, and F. Menczer. Competition among memes in a world with limited attention. Sci. Rep., 2012. Google ScholarGoogle ScholarCross RefCross Ref
  47. J. Yang and S. Counts. Predicting the speed, scale, and range of information diffusion in twitter. ICWSM, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  48. J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. ICDM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. J. Yang and J. Leskovec. Patterns of temporal variation in online media. WSDM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Do Cascades Recur?

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Other conferences
              WWW '16: Proceedings of the 25th International Conference on World Wide Web
              April 2016
              1482 pages
              ISBN:9781450341431

              Copyright © 2016 Copyright is held by the International World Wide Web Conference Committee (IW3C2)

              Publisher

              International World Wide Web Conferences Steering Committee

              Republic and Canton of Geneva, Switzerland

              Publication History

              • Published: 11 April 2016

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              WWW '16 Paper Acceptance Rate115of727submissions,16%Overall Acceptance Rate1,899of8,196submissions,23%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader