skip to main content
research-article

Narrow Proofs May Be Maximally Long

Published:18 May 2016Publication History
Skip Abstract Section

Abstract

We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size nΩ(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size nO(w) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. The lower bound does not extend all the way to Lasserre, however, since we show that there the formulas we study have proofs of constant rank and size polynomial in both n and w.

References

  1. Michael Alekhnovich. 2004. Mutilated chessboard problem is exponentially hard for resolution. Theor. Comput. Sci. 310, 1--3 (Jan. 2004), 513--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. 2002. Space complexity in propositional calculus. SIAM J. Comput. 31, 4 (2002), 1184--1211. Preliminary version appeared in STOC’00. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Michael Alekhnovich and Alexander A. Razborov. 2003. Lower bounds for polynomial calculus: Non-binomial case. Proc. Steklov Institute of Mathematics 242 (2003), 18--35. Available at http://people.cs.uchicago.edu/razborov/files/misha.pdf. Preliminary version appeared in FOCS’01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Albert Atserias and Víctor Dalmau. 2008. A combinatorial characterization of resolution width. J. Comput. System Sci. 74, 3 (May 2008), 323--334. Preliminary version appeared in CCC’03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. 2011. Clause-learning algorithms with many restarts and bounded-width resolution. J. Artif. Intell. Res. 40 (Jan. 2011), 353--373. Preliminary version appeared in SAT’09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Albert Atserias, Massimo Lauria, and Jakob Nordström. 2014. Narrow proofs may be maximally long. In Proceedings of the 29th Annual IEEE Conference on Computational Complexity (CCC’14). 286--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Albert Atserias, Moritz Müller, and Sergi Oliva. 2013. Lower bounds for DNF-refutations of a relativized weak pigeonhole principle. In Proceedings of the 28th Annual IEEE Conference on Computational Complexity (CCC’13). 109--120.Google ScholarGoogle ScholarCross RefCross Ref
  8. Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David Steurer, and Yuan Zhou. 2012. Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12). 307--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Roberto J. Bayardo Jr. and Robert Schrag. 1997. Using CSP look-back techniques to solve real-world SAT instances. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI’97). 203--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Paul Beame and Toniann Pitassi. 1998. Propositional proof complexity: Past, present, and future. Bulletin of the European Association for Theoretical Computer Science. 65 (1998), 66--89.Google ScholarGoogle Scholar
  11. Paul Beame, Chris Beck, and Russell Impagliazzo. 2012. Time-space tradeoffs in resolution: Superpolynomial lower bounds for superlinear space. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12). 213--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Paul Beame, Toniann Pitassi, and Nathan Segerlind. 2007. Lower bounds for Lovász--Schrijver systems and beyond follow from multiparty communication complexity. SIAM J. Comput. 37, 3 (2007), 845--869. Preliminary version appeared in ICALP’05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chris Beck, Jakob Nordström, and Bangsheng Tang. 2013. Some trade-off results for polynomial calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC’13). 813--822. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eli Ben-Sasson. 2009. Size space tradeoffs for resolution. SIAM J. Comput. 38, 6 (May 2009), 2511--2525. Preliminary version appeared in STOC’02. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Eli Ben-Sasson and Nicola Galesi. 2003. Space complexity of random formulae in resolution. Random Struct. Algor. 23, 1 (Aug. 2003), 92--109. Preliminary version appeared in CCC’01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eli Ben-Sasson and Jakob Nordström. 2008. Short proofs may be spacious: An optimal separation of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS’08). 709--718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Eli Ben-Sasson and Jakob Nordström. 2011. Understanding space in proof complexity: Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innovations in Computer Science (ICS’11). 401--416.Google ScholarGoogle Scholar
  18. Eli Ben-Sasson and Avi Wigderson. 2001. Short proofs are narrow—resolution made simple. J. ACM 48, 2 (March 2001), 149--169. Preliminary version appeared in STOC’99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Christoph Berkholz. 2012. On the complexity of finding narrow proofs. In Proc. 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12). IEEE, Washington, DC, 351--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. 2013. Parameterized complexity of DPLL search procedures. ACM Trans. Comput. Logic 14, 3 (Aug. 2013), 20. Preliminary version appeared in SAT’11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and Alexander A. Razborov. 2012. Parameterized bounded-depth Frege is not optimal. ACM Trans. Comput. Theor. 4 (Sept. 2012), 7:1--7:16. Issue 3. Preliminary version appeared in ICALP’11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Archie Blake. 1937. Canonical Expressions in Boolean Algebra. Ph.D. Dissertation. University of Chicago.Google ScholarGoogle Scholar
  23. Ilario Bonacina and Nicola Galesi. 2015. A framework for space complexity in algebraic proof systems. J. ACM 62, 3, Article 23 (June 2015), 23:1--23:20 pages. Preliminary version in ITCS’13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ilario Bonacina, Nicola Galesi, Tony Huynh, and Paul Wollan. 2014b. Space Proof Complexity for Random 3-CNFs via a (2 − ε)-Hall’s Theorem. Technical Report TR14-146. Electronic Colloquium on Computational Complexity (ECCC).Google ScholarGoogle Scholar
  25. Ilario Bonacina, Nicola Galesi, and Neil Thapen. 2014a. Total space in resolution. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS’14). 641--650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Maria Luisa Bonet and Nicola Galesi. 2001. Optimality of size-width tradeoffs for resolution. Computational Complexity 10, 4 (Dec. 2001), 261--276. Preliminary version appeared in FOCS’99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Michael Brickenstein and Alexander Dreyer. 2009. PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials. J. Symbol. Comput. 44, 9 (Sept. 2009), 1326--1345. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Michael Brickenstein, Alexander Dreyer, Gert-Martin Greuel, Markus Wedler, and Oliver Wienand. 2009. New developments in the theory of Gröbner bases and applications to formal verification. J. Pure Appl. Algebr. 213, 8 (Aug. 2009), 1612--1635.Google ScholarGoogle ScholarCross RefCross Ref
  29. Eden Chlamtáč and Madhur Tulsiani. 2012. Convex relaxations and integrality gaps. In Handbook on Semidefinite, Conic and Polynomial Optimization, Miguel F. Anjos and Jean B. Lasserre (Eds.). Springer, Berlin, 139--169.Google ScholarGoogle Scholar
  30. Vašek Chvátal. 1973. Edmond polytopes and a hierarchy of combinatorial problems. Discr. Math. 4, 1 (1973), 305--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Vašek Chvátal and Endre Szemerédi. 1988. Many hard examples for resolution. J. ACM 35, 4 (Oct. 1988), 759--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. 1996. Using the Groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC’96). ACM, New York, NY, 174--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Stephen A. Cook and Robert Reckhow. 1979. The relative efficiency of propositional proof systems. J. Symbol. Logic 44, 1 (March 1979), 36--50.Google ScholarGoogle ScholarCross RefCross Ref
  34. William Cook, Collette Rene Coullard, and Gyorgy Turán. 1987. On the complexity of cutting-plane proofs. Discr. Appl. Math. 18, 1 (Nov. 1987), 25--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Stefan S. Dantchev and Barnaby Martin. 2014. Relativization makes contradictions harder for resolution. Ann. Pure. Appl. Logic 165, 3 (March 2014), 837--857.Google ScholarGoogle ScholarCross RefCross Ref
  36. Stefan S. Dantchev, Barnaby Martin, and Martin Rhodes. 2009. Tight rank lower bounds for the Sherali-Adams proof system. Theor. Comput. Sci. 410, 21--23 (May 2009), 2054--2063. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stefan S. Dantchev and Søren Riis. 2001. “Planar” tautologies hard for resolution. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01). IEEE, Washington, DC, 220--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Juan Luis Esteban and Jacobo Torán. 2001. Space bounds for resolution. Inform. Comput. 171, 1 (2001), 84--97. Preliminary versions of these results appeared in STACS’99 and CSL’99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals. 2013. Towards an understanding of polynomial calculus: New separations and lower bounds (extended abstract). In Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP’13) (Lecture Notes in Computer Science), Vol. 7965. Springer, Berlin, 437--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil Thapen. 2015. Space complexity in polynomial calculus. SIAM J. Comput. 44, 4 (Aug. 2015), 1119--1153. Preliminary version in CCC’12.Google ScholarGoogle ScholarCross RefCross Ref
  41. Merrick Furst, James B. Saxe, and Michael Sipser. 1984. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theor. 17, 1 (1984), 13--27.Google ScholarGoogle ScholarCross RefCross Ref
  42. Zvi Galil. 1977. On resolution with clauses of bounded size. SIAM J. Comput. 6, 3 (1977), 444--459.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ralph E. Gomory. 1963. An algorithm for integer solutions of linear programs. In Recent Advances in Mathematical Programming, R. L. Graves and P. Wolfe (Eds.). McGraw-Hill, New York, NY, 269--302.Google ScholarGoogle Scholar
  44. Dima Grigoriev. 2001. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259, 1--2 (May 2001), 613--622.Google ScholarGoogle ScholarCross RefCross Ref
  45. Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. 2002. Complexity of semialgebraic proofs. Moscow Math. J. 2, 4 (2002), 647--679.Google ScholarGoogle ScholarCross RefCross Ref
  46. Dima Grigoriev and Nicolai Vorobjov. 2001. Complexity of null- and positivstellensatz proofs. Ann. Pure Appl. Logic 113, 1--3 (Dec. 2001), 153--160.Google ScholarGoogle ScholarCross RefCross Ref
  47. Mika Göös and Toniann Pitassi. 2014. Communication lower bounds via critical block sensitivity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC’14). ACM, New York, NY, 847--856. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Armin Haken. 1985. The intractability of resolution. Theor. Comput. Sci. 39, 2--3 (Aug. 1985), 297--308.Google ScholarGoogle ScholarCross RefCross Ref
  49. Johan Håstad. 1987. Computational Limitations of Small-depth Circuits. Ph.D. Dissertation. Massachussetts Institute of Technology.Google ScholarGoogle Scholar
  50. Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. 1999. Lower bounds for the polynomial calculus and the Gröbner basis algorithm. Comput. Complex. 8, 2 (1999), 127--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Jean B. Lasserre. 2001. An explicit exact SDP relaxation for nonlinear 0-1 programs. In Proceedings of the 8th International Conference on Integer Programming and Combinatorial Optimization (Lecture Notes in Computer Science), Vol. 2081. Springer, Berlin, 293--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Monique Laurent. 2001. A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28 (2001), 470--496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Massimo Lauria and Jakob Nordström. 2015. Tight size-degree bounds for sums-of-squares proofs. In Proceedings of the 30th Annual Computational Complexity Conference (CCC’15) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 33. 448--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. László Lovász and Alexander Schrijver. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimiz. 1, 2 (1991), 166--190.Google ScholarGoogle ScholarCross RefCross Ref
  55. João P. Marques-Silva and Karem A. Sakallah. 1999. GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 5 (May 1999), 506--521. Preliminary version appeared in ICCAD’96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Mladen Mikša and Jakob Nordström. 2015. A generalized method for proving polynomial calculus degree lower bounds. In Proceedings of the 30th Annual Computational Complexity Conference (CCC’15) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 33. 467--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC’01). 530--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Ryan O’Donnell and Yuan Zhou. 2013. Approximability and proof complexity. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13). 1537--1556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Pablo A. Parrilo. 2000. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. Dissertation. California Institute of Technology.Google ScholarGoogle Scholar
  60. Pavel Pudlák. 1999. On the complexity of propositional calculus. In Sets and Proofs, S. Barry Cooper and John K. Truss (Eds.). London Mathematical Society Lecture Note Series, Vol. 258. Cambridge University Press, 197--218.Google ScholarGoogle Scholar
  61. Pavel Pudlák. 2000. Proofs as games. Am. Math. Mon. (2000), 541--550.Google ScholarGoogle Scholar
  62. Alexander A. Razborov. 1998. Lower bounds for the polynomial calculus. Comput. Complex. 7, 4 (Dec. 1998), 291--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Grant Schoenebeck. 2008. Linear level Lasserre lower bounds for certain k-CSPs. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS’08). 593--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Hanif D. Sherali and Warren P. Adams. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discr. Math. 3 (1990), 411--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Neil Thapen. 2014. A Trade-off Between Length and Width in Resolution. Technical Report TR14-137. Electronic Colloquium on Computational Complexity (ECCC).Google ScholarGoogle Scholar
  66. Alasdair Urquhart. 1987. Hard examples for resolution. J. ACM 34, 1 (Jan. 1987), 209--219. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Narrow Proofs May Be Maximally Long

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computational Logic
        ACM Transactions on Computational Logic  Volume 17, Issue 3
        July 2016
        233 pages
        ISSN:1529-3785
        EISSN:1557-945X
        DOI:10.1145/2894199
        • Editor:
        • Orna Kupferman
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 May 2016
        • Revised: 1 October 2015
        • Accepted: 1 October 2015
        • Received: 1 September 2014
        Published in tocl Volume 17, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader