skip to main content
research-article

A Robust and Scalable Implementation of the Parks-McClellan Algorithm for Designing FIR Filters

Authors Info & Claims
Published:13 August 2016Publication History
Skip Abstract Section

Abstract

With a long history dating back to the beginning of the 1970s, the Parks-McClellan algorithm is probably the most well known approach for designing finite impulse response filters. Despite being a standard routine in many signal processing packages, it is possible to find practical design specifications where existing codes fail to work. Our goal is twofold. We first examine and present solutions for the practical difficulties related to weighted minimax polynomial approximation problems on multi-interval domains (i.e., the general setting under which the Parks-McClellan algorithm operates). Using these ideas, we then describe a robust implementation of this algorithm. It routinely outperforms existing minimax filter design routines.

References

  1. W. A. Abu-Al-Saud and G. L. Stüber. 2004. Efficient wideband channelizer for software radio systems using modulated PR filterbanks. IEEE Transactions on Signal Processing, 52, 10, 2807--2820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. W. Adams and A. N. Wilson. 1985. On the fast design of high-order FIR digital filters. IEEE Transactions on Circuits and Systems 32, 9, 958--960.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Ahsan and T. Saramäki. 2012. Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design. Retrieved July 16, 2016, from http://www.intechopen.com/download/pdf/39374Google ScholarGoogle Scholar
  4. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK Users' Guide. Vol. 9. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Antoniou. 1982. Accelerated procedure for the design of equiripple nonrecursive digital filters. IEE Proceedings G: Electronic Circuits and Systems 129, 1, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Antoniou. 1983. New improved method for the design of weighted-Chebyshev, nonrecursive, digital filters. IEEE Transactions on Circuits and Systems 30, 10, 740--750.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Antoniou. 2005. Digital Signal Processing: Signals, Systems, and Filters. McGraw-Hill Education.Google ScholarGoogle Scholar
  8. J.-P. Berrut and L. N. Trefethen. 2004. Barycentric Lagrange interpolation. SIAM Review 46, 3, 501--517.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. F. Bonzanigo. 1982. Some improvements to the design programs for equiripple FIR filters. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'82), Vol. 7. 274--277.Google ScholarGoogle ScholarCross RefCross Ref
  10. L. P. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello. 2011. Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points. Mathematics of Computation 80, 275, 1623--1638.Google ScholarGoogle Scholar
  11. L. P. Bos and N. Levenberg. 2008. On the calculation of approximate Fekete points: The univariate case. Electronic Transactions on Numerical Analysis 30, 377--397.Google ScholarGoogle Scholar
  12. J. P. Boyd. 2006. Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: Solving transcendental equations by spectral interpolation and polynomial rootfinding. Journal of Engineering Mathematics 56, 3, 203--219.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. P. Boyd. 2013. Finding the zeros of a univariate equation: Proxy rootfinders, Chebyshev interpolation, and the companion matrix. SIAM Review 55, 2, 375--396.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. P. Boyd and D. H. Gally. 2007. Numerical experiments on the accuracy of the Chebyshev-Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials. Journal of Computational and Applied Mathematics 205, 1, 281--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J.-P. Calvi and N. Levenberg. 2008. Uniform approximation by discrete least squares polynomials. Journal of Approximation Theory 152, 1, 82--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Çivril and M. Magdon-Ismail. 2009. On selecting a maximum volume sub-matrix of a matrix and related problems. Theoretical Computer Science 410, 47--49, 4801--4811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. W. Cheney. 1982. Introduction to Approximation Theory. AMS Chelsea Publications.Google ScholarGoogle Scholar
  18. L. Dagum and R. Menon. 1998. OpenMP: An industry standard API for shared-memory programming. IEEE Computational Science Engineering 5, 1, 46--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Day and L. Romero. 2005. Roots of polynomials expressed in terms of orthogonal polynomials. SIAM Journal on Numerical Analysis 43, 5, 1969--1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. De Dinechin, M. Istoan, and A. Massouri. 2014. Sum-of-product architectures computing just right. In Proceedings of the 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures, and Processors (ASAP'14). 41--47.Google ScholarGoogle Scholar
  21. T. A. Driscoll, N. Hale, and L. N. Trefethen. 2014. Chebfun Guide. Pafnuty Publications, Oxford, UK.Google ScholarGoogle Scholar
  22. A. Dutt, M. Gu, and V. Rokhlin. 1996. Fast algorithms for polynomial interpolation, integration, and differentiation. SIAM Journal on Numerical Analysis 33, 5, 1689--1711. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Ebert and U. Heute. 1983. Accelerated design of linear or minimum phase FIR filters with a Chebyshev magnitude response. IEE Proceedings G: Electronic Circuits and Systems 130, 6, 267--270.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Embree and L. N. Trefethen. 1999. Green's functions for multiply connected domains via conformal mapping. SIAM Review 41, 4, 745--761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. S. Floater and K. Hormann. 2007. Barycentric rational interpolation with no poles and high rates of approximation. Numerische Mathematik 107, 2, 315--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software 33, 2, 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. G. Guennebaud and B. Jacob. 2010. Eigen v3. Available at http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  28. N. J. Higham. 2004. The numerical stability of barycentric Lagrange interpolation. IMA Journal of Numerical Analysis 24, 547--556.Google ScholarGoogle ScholarCross RefCross Ref
  29. L. J. Karam and J. H. McClellan. 1995. Complex Chebyshev approximation for FIR filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 42, 3, 207--216.Google ScholarGoogle ScholarCross RefCross Ref
  30. L. J. Karam and J. H. McClellan. 1996. Design of optimal digital FIR filters with arbitrary magnitude and phase responses. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'96), Vol. 2. 385--388.Google ScholarGoogle Scholar
  31. D. M. Kodek. 2012. LLL algorithm and the optimal finite wordlength FIR design. IEEE Transactions on Signal Processing 60, 3, 1493--1498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. E. Levin and E. B. Saff. 2006. Potential theoretic tools in polynomial and rational approximation. In Harmonic Analysis and Rational Approximation. Lecture Notes in Control and Information Science, Vol. 327. Springer, 71--94.Google ScholarGoogle Scholar
  33. W. F. Mascarenhas. 2014. The stability of barycentric interpolation at the Chebyshev points of the second kind. Numerische Mathematik 128, 2, 265--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. W. F. Mascarenhas and A. Camargo. 2014. On the backward stability of the second barycentric formula for interpolation. Dolomites Research Notes on Approximation 7, 1--12.Google ScholarGoogle Scholar
  35. J. H. McClellan and T. W. Parks. 2005. A personal history of the Parks-McClellan algorithm. IEEE Signal Processing Magazine 22, 2, 82--86.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. H. McClellan, T. W. Parks, and L. Rabiner. 1973. A computer program for designing optimum FIR linear phase digital filters. IEEE Transactions on Audio and Electroacoustics 21, 6, 506--526.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. M. Muller, N. Brisebarre, F. de Dinechin, C. P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. 2009. Handbook of Floating-Point Arithmetic. Birkhäuser, Boston, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. V. Oppenheim and R. W. Schafer. 2010. Discrete-Time Signal Processing. Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Pachón and L. N. Trefethen. 2009. Barycentric-Remez algorithms for best polynomial approximation in the Chebfun system. BIT Numerical Mathematics 49, 4, 721--741.Google ScholarGoogle ScholarCross RefCross Ref
  40. T. W. Parks and J. H. McClellan. 1972. Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Transactions on Circuit Theory 19, 2 (March 1972), 189--194.Google ScholarGoogle ScholarCross RefCross Ref
  41. D. Pelloni and F. Bonzanigo. 1980. On the design of high-order linear phase FIR filters. Digital Signal Processing 1, 3--10.Google ScholarGoogle Scholar
  42. M. J. D. Powell. 1981. Approximation Theory and Methods. Cambridge University Press, Cambridge, MA.Google ScholarGoogle Scholar
  43. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific Computing (3rd ed.). Cambridge University Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. E. Z. Psarakis and G. V. Moustakides. 2003. A robust initialization scheme for the Remez exchange algorithm. IEEE Signal Processing Letters 10, 1, 1--3.Google ScholarGoogle ScholarCross RefCross Ref
  45. L. Rabiner, J. Kaiser, and R. W. Schafer. 1974. Some considerations in the design of multiband finite-impulse-response digital filters. IEEE Transactions on Acoustics, Speech, and Signal Processing 22, 6, 462--472.Google ScholarGoogle ScholarCross RefCross Ref
  46. H.-J. Rack and M. Reimer. 1982. The numerical stability of evaluation schemes for polynomials based on the Lagrange interpolation form. BIT Numerical Mathematics 22, 1, 101--107.Google ScholarGoogle ScholarCross RefCross Ref
  47. E. Remes. 1934. Sur le calcul effectif des polynômes d'approximation de tchebichef. Comptes Rendus Hebdomadaires Des séances De l'Académie Des Sciences 199, 337--340.Google ScholarGoogle Scholar
  48. H. Rutishauser. 1976. Vorlesungen Über Numerische Mathematik. Birkhäuser Basel, Stuttgard. English translation, 1990. Lectures on Numerical Mathematics, W. Gautschi (Ed.). Birkhäuser, Boston, MA.Google ScholarGoogle Scholar
  49. T. Saramäki. 1992. An efficient Remez-type algorithm for the design of optimum IIR filters with arbitrary partially constrained specifications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'92), Vol. 5. 2577--2580.Google ScholarGoogle ScholarCross RefCross Ref
  50. T. Saramäki. 1994. Generalizations of classical recursive digital filters and their design with the aid of a Remez-type algorithm. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'94), Vol. 2. 549--552.Google ScholarGoogle ScholarCross RefCross Ref
  51. I. W. Selesnick. 1997. New exchange rules for IIR filter design. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'97), Vol. 3. 2209--2212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. I. W. Selesnick, M. Lang, and C. S. Burrus. 1994. Magnitude squared design of recursive filters with the Chebyshev norm using a constrained rational Remez algorithm. In Proceedings of the 6th IEEE Digital Signal Processing Workshop. 23--26.Google ScholarGoogle Scholar
  53. J. Shen, G. Strang, and A. J. Wathen. 2001. The potential theory of several intervals and its applications. Applied Mathematics and Optimization 44, 1, 67--85.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. D. J. Shpak and A. Antoniou. 1990. A generalized Remez method for the design of FIR digital filters. IEEE Transactions on Circuits and Systems 37, 2, 161--174.Google ScholarGoogle ScholarCross RefCross Ref
  55. A. Sommariva and M. Vianello. 2009. Computing approximate Fekete points by QR factorizations of Vandermonde matrices. Computers and Mathematics with Applications 57, 8, 1324--1336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. A. Sommariva and M. Vianello. 2010. Approximate Fekete points for weighted polynomial interpolation. Electronic Transactions on Numerical Analysis 37, 1--22.Google ScholarGoogle Scholar
  57. G. Strang. 1999. The discrete cosine transform. SIAM Review 41, 1, 135--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. L. N. Trefethen. 2013. Approximation Theory and Approximation Practice. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. L. Veidinger. 1960. On the numerical determination of the best approximation in the Chebyshev sense. Numerische Mathematik 2, 1, 99--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Webb, L. N. Trefethen, and P. Gonnet. 2012. Stability of barycentric interpolation formulas for extrapolation. SIAM Journal on Scientific Computing 34, 6, A3009--A3015.Google ScholarGoogle ScholarCross RefCross Ref
  61. P. Zahradnik and M. Vlcek. 2008. Robust analytical design of equiripple comb FIR filters. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'08). 1128--1131.Google ScholarGoogle Scholar

Index Terms

  1. A Robust and Scalable Implementation of the Parks-McClellan Algorithm for Designing FIR Filters

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Mathematical Software
            ACM Transactions on Mathematical Software  Volume 43, Issue 1
            March 2017
            202 pages
            ISSN:0098-3500
            EISSN:1557-7295
            DOI:10.1145/2987591
            Issue’s Table of Contents

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 13 August 2016
            • Revised: 1 March 2016
            • Accepted: 1 March 2016
            • Received: 1 March 2015
            Published in toms Volume 43, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader