skip to main content
survey

Predicting Breast Cancer Recurrence Using Machine Learning Techniques: A Systematic Review

Authors Info & Claims
Published:12 October 2016Publication History
Skip Abstract Section

Abstract

Background: Recurrence is an important cornerstone in breast cancer behavior, intrinsically related to mortality. In spite of its relevance, it is rarely recorded in the majority of breast cancer datasets, which makes research in its prediction more difficult. Objectives: To evaluate the performance of machine learning techniques applied to the prediction of breast cancer recurrence. Material and Methods: Revision of published works that used machine learning techniques in local and open source databases between 1997 and 2014. Results: The revision showed that it is difficult to obtain a representative dataset for breast cancer recurrence and there is no consensus on the best set of predictors for this disease. High accuracy results are often achieved, yet compromising sensitivity. The missing data and class imbalance problems are rarely addressed and most often the chosen performance metrics are inappropriate for the context. Discussion and Conclusions: Although different techniques have been used, prediction of breast cancer recurrence is still an open problem. The combination of different machine learning techniques, along with the definition of standard predictors for breast cancer recurrence seem to be the main future directions to obtain better results.

References

  1. P. H. Abreu, H. Amaro, D. C. Silva, P. Machado, and M. H. Abreu. 2013b. Personalizing breast cancer patients with heterogeneous data. In Proceedings of the IFMBE International Conference on Health Informatics. 39--42.Google ScholarGoogle Scholar
  2. P. H. Abreu, H. Amaro, D. C. Silva, P. Machado, M. H. Abreu, N. Afonso, and A. Dourado. 2013a. Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data. In Proceedings of the Mediterranean Conference on Medical and Biological Engineering and Computing. 1366--1369.Google ScholarGoogle Scholar
  3. R. Agrawal, T. Imielinski, and A. N. Swami. 1993. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. A. Ahmadi, M. R. Ahmadi, and S. R. Shadizadeh. 2013. Evolving artificial neural network and imperialist competitive algorithm for prediction permeability of the reservoir. Neural Computing and Applications 13, 2 (2013), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. S. Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46, 3 (1992), 175--185.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Arlot and A. Celisse. 2010. A survey of cross-validation procedures for model selection. Statistics Surveys 4 (2010), 40--79.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Atla, R. Tada, V. Sheng, and N. Singireddy. 2011. Sensitivity of different machine learning algorithms to noise. Journal of Computing Sciences in Colleges 26, 5 (2011), 96--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Azevedo and M. F. Santos. 2008. KDD, SEMMA and CRISP-DM: A parallel overview. In Proceedings of Informatics and Data Mining. 182--185.Google ScholarGoogle Scholar
  9. F. Beca, R. Santos, D. Vieira, L. Zeferino, R. Dufloth, and F. Schmitt. 2014. Primary relapse site pattern in women with triple-negative breast cancer. Pathology - Research and Practice 210, 9 (2014), 571--575.Google ScholarGoogle ScholarCross RefCross Ref
  10. Z. Beheshti, S. M. H. Shamsuddin, E. Beheshti, and S. S. Yuhaniz. 2014. Enhancement of artificial neural network learning using centripetal accelerated particle swarm optimization for medical diseases diagnosis. Soft Computing 18, 11 (2014), 2253--2270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Belciug, F. Gorunescu, A. B. Salem, and M. Gorunescu. 2010. Clustering-based approach for detecting breast cancer recurrence. In Proceedings of the International Conference on Intelligent Systems Design and Applications (ISDA). 533--538.Google ScholarGoogle Scholar
  12. C. M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Boser, I. Guyon, and V. Vapnik. 1992. A training algorithm for optimal margin classifiers. In Proceedings of the Annual Workshop on Computational Learning Theory. 144--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. Breiman. 1996. Bagging predictors. In Machine Learning 24, 2 (1996), 123--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Breiman. 1998. Arcing classifiers. The Annals of Statistics Journal 26, 3 (1998), 801--849.Google ScholarGoogle ScholarCross RefCross Ref
  16. L. Breiman. 2001. Random forests. Machine Learning Journal 45 (2001), 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. L. Breiman, J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression Trees. Wadsworth 8 Brooks, Monterey, CA.Google ScholarGoogle Scholar
  18. R. Chandrasekaran, Y. U. Ryu, V. S. Jacob, and S. Hong. 2005. Isotonic separation. INFORMS Journal on Computing 17, 4 (2005), 462--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth. 2000. CRISP-DM 1.0: Step-by-Step Data Mining Guide. SPSS.Google ScholarGoogle Scholar
  20. K. W. Chau. 2007. Application of a PSO-based neural network in analysis of outcomes of construction claims. Automation in Construction 16, 5 (2007), 642--646.Google ScholarGoogle ScholarCross RefCross Ref
  21. V. Chaurasia and S. Pal. 2014. Data mining techniques: To predict and resolve breast cancer survivability. International Journal of Computer Science and Mobile Computing 3, 1 (2014), 10--22.Google ScholarGoogle Scholar
  22. N. V. Chawla. 2010. Data Mining and Knowledge Discovery Handbook (2nd ed.). Springer US. 875--886. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 2002 (2002), 321--357. Google ScholarGoogle ScholarCross RefCross Ref
  24. N. V. Chawla, N. Japkowicz, and A. Kotcz. 2004. Editorial: Special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter 6, 1 (2004), 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. Chen, S. S. Fuller, C. Friedman, and W. Hersh (Eds.). 2005. Medical Informatics—Knowledge Management and Data Mining in Biomedicine. Vol. 8. Springer-Verlag US. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. F. Cismondi, A. S. Fialho, S. M. Vieira, S. R. Reti, J. M. Sousa, and S. N. Finkelstein. 2013. Missing data in medical databases: Impute, delete or classify? Artificial Intelligence in Medicine 58, 1 (2013), 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Cohen. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 1 (1960), 37--46.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. A. Cruz and D. S. Wishart. 2006. Applications of machine learning in cancer prediction and prognosis. Cancer Informatics 2 (2006), 59--77.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39, 1 (1977), 1--38.Google ScholarGoogle Scholar
  30. M. Dettling and P. Buhlmann. 2004. Finding predictive gene groups from microarray data. Journal of Multivariate Analysis 90, 1 (2004), 106--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. O. Duda, P. E. Hart, and D. G. Stork. 2012. Pattern Classification (2nd ed.). John Wiley 8 Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. B. Efron and R. Tibshirani. 1994. An Introduction to the Bootstrap (1st ed.). Chapman and Hall/CRC.Google ScholarGoogle Scholar
  33. B. D. Eugenio and M. Glass. 2004. The kappa statistic: A second look. Computational Linguistics 30, 1 (2004), 95--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Q. Fan, C. J. Zhu, and L. Yin. 2010. Predicting breast cancer recurrence using data mining techniques. In Proceedings of International Conference on Bioinformatics and Biomedical Technology. 310--311.Google ScholarGoogle Scholar
  35. A. Farr, R. Wuerstlein, A. Heiduschka, C. F. Singer, and N. Harbeck. 2013. Modern risk assessment for individualizing treatment concepts in early-stage breast cancer. Reviews in Obstetrics and Gynecology 6, 3 (2013), 165--173.Google ScholarGoogle Scholar
  36. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. 1996. From data mining to knowledge discovery in databases. Artificial Intelligence Magazine 17, 3 (1996), 37--54.Google ScholarGoogle Scholar
  37. C. Ferri, J. Hernández-Orallo, and R. Modroiu. 2009. An experimental comparison of performance measures for classification. Pattern Recognition Letters 30, 1 (2009), 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Fischer and C. Igel. 2012. An introduction to restricted Boltzmann machines. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer, 14--36.Google ScholarGoogle Scholar
  39. A. Fischer and C. Igel. 2014. Training restricted Boltzmann machines: An introduction. Pattern Recognition 47, 1 (2014), 25--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. R. A. Fisher. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 2 (1936), 179--188.Google ScholarGoogle ScholarCross RefCross Ref
  41. Y. Freund and R. E. Schapire. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In Proceedings of the 2nd European Conference on Computational Learning Theory. 23--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Friedman, T. Hastie, and R. Tibshirani. 2000. Additive logistic regression: A statistical view of boosting. Annals of Statistics 28, 2 (2000), 337--407.Google ScholarGoogle ScholarCross RefCross Ref
  43. M. H. Galea, R. W. Blamey, C. E. Elston, and I. O. Ellis. 1992. The Nottingham prognostic index in primary breast cancer. Breast Cancer Research and Treatment 22, 3 (1992), 207--219.Google ScholarGoogle ScholarCross RefCross Ref
  44. V. Ganganwar. 2012. An overview of classification algorithms for imbalanced datasets. International Journal of Emerging Technology and Advanced Engineering 2, 4 (2012), 42--47.Google ScholarGoogle Scholar
  45. P. J. García-Laencina, P. H. Abreu, M. H. Abreu, and N. Afonso. 2015. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Computers in Biology and Medicine 59, 2015 (2015), 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. P. J. García-Laencina, J. L. Sancho-Gómez, and A. Figueiras-Vidal. 2010. Pattern classification with missing data: A review. Neural Computing 8 Applications 19, 2010 (2010), 263--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. P. J. García-Laencina, J. L. Sancho-Gómez, and A. R. Figueiras-Vidal. 2013. Classifying patterns with missing values using multi-task learning perceptrons. Expert Systems with Applications 40, 4 (2013), 1333--1341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. V. Garcia, R. A. Mollineda, R. Alejo, and J. M. Sotoca. 2007. The class imbalance problem in pattern classification and learning. In II Congreso Español de Informática (CEDI’07). 978--84.Google ScholarGoogle Scholar
  49. O. Gevaert, F. De Smet, D. Timmerman, Y. Moreau, and B. De Moor. 2006. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22, 14 (2006), 184--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. L. Guo-Zheng. 2011. Machine learning for clinical data processing. In Machine Learning: Concepts, Methodologies, Tools and Applications. IGI Global, 875--897.Google ScholarGoogle Scholar
  51. J. Han, M. Kamber, and J. Pei. 2011. Data Mining: Concepts and Techniques: Concepts and Techniques (3rd ed.). Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. N. Harbeck, C. Thomssen, and M. Gnant. 2013. St. Gallen 2013: Brief preliminary summary of the consensus discussion. Breast Care 8, 2 (2013), 102--109.Google ScholarGoogle ScholarCross RefCross Ref
  53. H. He and E. Garcia. 2009. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering 21, 9 (2009), 1263--1284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. J. Huang. 2005. Using auc and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering 17, 3 (2005), 290--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. H. In, K. Y. Bilimoria, A. K. Stewart, K. E. Wroblewski, M. C. Posner, M. S. Talamonti, and D. P. Winchester. 2014. Cancer recurrence: An important but missing variable in national cancer registries. Annals of Surgical Oncology 21 (2014), 1520--1529.Google ScholarGoogle ScholarCross RefCross Ref
  56. O. Intrator and N. Intrator. 2001. Interpreting neural-network results: A simulation study. Computational Statistics and Data Analysis 37, 3 (2001), 373--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. H. Irshad, A. Gouaillardd, L. Rouxa, and D. Racoceanub. 2014. Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology. Computerized Medical Imaging and Graphics 38, 5 (2014), 390--402.Google ScholarGoogle ScholarCross RefCross Ref
  58. A. Jain and R. Dubes. 1988. Algorithms for Clustering Data. Prentice-Hall, Inc, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. K. Jain. 2010. Data clustering: 50 years beyond k-means. Pattern Recognition Letters Journal 31, 8 (2010), 651--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. M. Jerez-Aragonés, J. A. Gomez-Ruiz, G. Ramos-Jimenez, J. Munoz-Perez, and E. Alba-Conejo. 2003. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artificial Intelligence in Medicine 27, 1 (2003), 45--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. T. Jo and N. Japkowicz. 2004. Class imbalances versus small disjuncts. ACM SIGKDD Explorations Newsletter 6, 1 (2004), 40--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. T. Jonsdottir, E. T. Hvannberg, H. Sigurdsson, and S. Sigurdsson. 2008. The feasibility of constructing a predictive outcome model for breast cancer using the tools of data mining. Expert Systems with Applications 34, 1 (2008), 108--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. M. Kantardzic. 2011. Data Mining: Concepts, Models, Methods, and Algorithms (2nd ed.). Wiley-IEEE Press. Google ScholarGoogle ScholarCross RefCross Ref
  64. W. Kim, K. S. Kim, J. E. Lee, D. Y. Noh, S. W. Kim, Y. S. Jung, M. Y. Park, and R. W. Park. 2012. Development of novel breast cancer recurrence prediction model using support vector machines. Journal of Breast Cancer 15, 2 (2012), 230--238.Google ScholarGoogle ScholarCross RefCross Ref
  65. D. Kleinbaum, M. Klein, and E. Pryor. 2002. Logistic Regression: A Self-Learning Text. Statistics for Biology and Health Series. Springer-Verlag.Google ScholarGoogle Scholar
  66. T. Kohonen. 1995. Self-Organizing Maps. Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. I. Kononenko. 2001. Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23 (2001), 89--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. 2006. Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering 30, 1 (2006), 25--36.Google ScholarGoogle Scholar
  69. S. B. Kotsiantis. 2007. Supervised machine learning: A review of classification techniques. Informatica 31 (2007), 249--268.Google ScholarGoogle Scholar
  70. K. Kouroua, T. P. Exarchosa, K. P. Exarchosa, M. V. Karamouzisc, and D. I. Fotiadisa. 2015. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal 13 (2015), 8--17.Google ScholarGoogle ScholarCross RefCross Ref
  71. B. S. Kumar. 2012. Boosting techniques on rarity mining. International Journal of Advanced Research in Computer Science and Software Engineering 2, 10 (2012), 27--35.Google ScholarGoogle Scholar
  72. H. Larochelle and Y. Bengio. 2008. Classification using discriminative restricted Boltzmann machines. In Proceedings of the International Conference on Machine Learning. 536--543. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio. 2012. Learning algorithms for the classification restricted Boltzmann machine. Journal of Machine Learning Research 13, 1 (2012), 643--669. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. D. T. Larose. 2005. Discovering Knowledge in Data: An Introduction to Data Mining. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. S. Lee and P. A. Abbott. 2003. Bayesian networks for knowledge discovery in large datasets: Basics for nurse researchers. Journal of Biomedical Informatics 36, 2003 (2003), 389--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Z. Li and J. R. Eastman. 2006. The nature and classification of unlabelled neurons in the use of Kohonen’s self-organizing map for supervised classification. Transactions in GIS 10, 4 (2006), 599--613.Google ScholarGoogle ScholarCross RefCross Ref
  77. M. Lichman. 2015. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.Google ScholarGoogle Scholar
  78. R. J. A. Little and D. B. Rubin. 2002. Statistical Analysis with Missing Data (2nd ed.). Wiley.Google ScholarGoogle Scholar
  79. P. Liu, L. Lei, and N. Wu. 2005. A quantitative study of the effect of missing data in classifiers. In Proceedings of the International Conference on Computer and Information Technology. 28--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. R. Longadge and S. Dongre. 2013. Class imbalance problem in data mining review. International Journal of Computer Science and Network 1, 2 (2013), 83--87.Google ScholarGoogle Scholar
  81. S. P. Luttrell. 1994. Partitioned mixture distribution: An adaptive Bayesian network for low-level image processing. IEE Proc Vision, Image Signal Process 141, 4 (1994), 251--260.Google ScholarGoogle ScholarCross RefCross Ref
  82. M. T. Mahmoudi, F. Taghiyareh, N. Forouzideh, and C. Lucas. 2013. Evolving artificial neural network structure using grammar encoding and colonial competitive algorithm. Neural Computing and Applications 22, 1 (2013), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  83. S. Mani, M. J. Pazzani, and J. West. 1997. Knowledge discovery from a breast cancer database. Artificial Intelligence in Medicine 1211 (1997), 130--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Z. Markov and D. T. Larose. 2006. Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage. John Wiley 8 Sons, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. J. P. Marques de Sá. 2001. Pattern Recognition: Concepts, Methods and Applications. Springer-Verlag.Google ScholarGoogle ScholarCross RefCross Ref
  86. W. McCulloch and W. Pitts. 1943. A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 4 (1943), 115--133.Google ScholarGoogle ScholarCross RefCross Ref
  87. M. L. McHugh. 2012. Interrater reliability: The kappa statistic. Biochemia Medica 22, 3 (2012), 276--282.Google ScholarGoogle ScholarCross RefCross Ref
  88. S. A. Medjahed, T. A. Saadi, and A. Benyettou. 2013. Breast cancer diagnosis by using k-nearest neighbor with different distances and classification rules. International Journal of Computer Applications 62, 1 (2013), 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  89. G. Menardi and N. Torelli. 2014. Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery 28, 1 (2014), 92--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. E. Mendonza. 2013. Predictors of early distant metastases in women with breast cancer. Journal of Cancer Research and Clinical Oncology 139, 4 (2013), 645--652.Google ScholarGoogle ScholarCross RefCross Ref
  91. M. Minsky and S. Papert. 1969. An Introduction to Computational Geometry. MIT Press.Google ScholarGoogle Scholar
  92. M. Mitchell. 1996. An Introduction to Genetic Algorithms. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. T. M. Mitchell. 1997. Machine Learning (1st ed.). McGraw-Hill, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. C. Molina, B. Prados-Suarez, D. R. M. Prados, and Y. C. Pena. 2013. Improving hospital decision making with interpretable associations over datacubes. Studies in Health Technology and Informatics 197 (2013), 91--95.Google ScholarGoogle Scholar
  95. S. E. Moody, D. Perez, T. C. Pan, C. J. Sarkisian, C. P. Portocarrero, C. J. Sterner, K. L. Notorfrancesco, R. D. Cardiff, and L. A. Chodosh. 2005. The transcriptional repressor snail promotes mammary tumor recurrence. Cancer Cell 8, 3 (2005), 197--209.Google ScholarGoogle ScholarCross RefCross Ref
  96. M. S. Murti. 2012. Using rule based classifiers for the predictive analysis of breast cancer recurrence. Journal of Information Engineering and Applications 2, 2 (2012), 12--19.Google ScholarGoogle Scholar
  97. Nature Publishing Group. 2015. Nature International Weekly Journal of Science. (2015). http://www.nature.com/nature.Google ScholarGoogle Scholar
  98. I. A. Olivotto, C. D. Bajdik, P. M. Ravdin, C. H. Speers, A. J. Coldman, B. D. Norris, and K. A. Gelmon. 2005. Population-based validation of the prognostic model adjuvant! for early breast cancer. Journal of Clinical Oncology 23, 22 (2005), 2716--2735.Google ScholarGoogle ScholarCross RefCross Ref
  99. C. Ozkan, O. Kisi, and B. Akay. 2011. Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrigation Science 29, 6 (2011), 431--441.Google ScholarGoogle ScholarCross RefCross Ref
  100. B. R. Patel and K. K. Rana. 2014. A survey on decision tree algorithm for classification. Journal of Engineering Development and Research 2, 1 (2014), 5 pages.Google ScholarGoogle Scholar
  101. A. P. Pawlovsky and M. Nagahashi. 2014. A method to select a good setting for the kNN algorithm when using it for breast cancer prognosis. In Proceedings of IEEE-EMBS International Conference on Biomedical and Health Informatics. 189--192.Google ScholarGoogle Scholar
  102. K. Polyak. 2011. Heterogeneity in breast cancer. Journal of Clinical Investigation 121, 10 (2011), 3786--3788.Google ScholarGoogle ScholarCross RefCross Ref
  103. J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1 (1986), 81--106. Google ScholarGoogle ScholarCross RefCross Ref
  104. J. R. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. C. R. Rao. 1948. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society. Series B (Methodological) 10, 2 (1948), 159--203.Google ScholarGoogle ScholarCross RefCross Ref
  106. A. R. Razavi, H. Gill, H. Ahlfeldt, and N. Shahsavar. 2005. A data pre-processing method to increase efficiency and accuracy in data mining. In Artificial Intelligence in Medicine. Vol. 3581. Springer, Berlin, 434--443. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. A. R. Razavi, H. Gill, H. Ahlfeldt, and N. Shahsavar. 2007. Predicting metastasis in breast cancer: Comparing a decision tree with domain experts. Journal of Medical Systems 31, 4 (2007), 263--273. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. D. B. Rubin. 2004. Multiple Imputation for Nonresponse in Surveys. John Wiley 8 Sons.Google ScholarGoogle Scholar
  109. Y. U. Ryu, R. Chandrasekaran, and V. S. Jacob. 2007a. Breast cancer prediction using the isotonic separation technique. European Journal of Operational Research 181, 2 (2007), 842--854.Google ScholarGoogle ScholarCross RefCross Ref
  110. Y. U. Ryu, R. Chandrasekaran, and V. S. Jacob. 2007b. Data classification using the isotonic separation technique: Application to breast cancer prediction. European Journal of Operational Research 181 (2007), 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  111. G. I. Salama, M. B. Abdelhalim, and M. A. E. Zeid. 2012. Experimental comparison of classifiers for breast cancer diagnosis. In Proceedings of International Conference on Computer Engineering and Systems (ICCES). 180--185.Google ScholarGoogle ScholarCross RefCross Ref
  112. M. S. Santos, P. H. Abreu, P. J. García-Laencina, A. Simão, and A. Carvalho. 2015. A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients. Journal of Biomedical Informatics 58 (2015), 49--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. SAS Institute. 2015. SAS Enterprise Miner - SEMMA. Retrieved from https://web.archive.org/web/20120308165638/http://www.sas.com/offices/europe/uk/technologies/analytics/datamining/miner/semma.html/.Google ScholarGoogle Scholar
  114. R. E. Schapire. 1990. The strength of weak learnability. Machine Learning 5, 2 (1990), 197--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. B. Scholkopf and A. Smola. 2002. Learning with Kernels. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  116. SEER Research. 2015. Surveillance, Epidemiology, and End Results (SEER) Program. Retrieved from http://seer.cancer.gov/data/access.html.Google ScholarGoogle Scholar
  117. L. A. Shalabi and Z. Shaaban. 2006. Normalization as a preprocessing engine for data mining and the approach of preference matrix. In Proceedings of the International Conference on Dependability of Computer Systems. 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. J. Shawe-Taylor and N. Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. K. Socha and C. Blum. 2007. An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural network training. Neural Computing and Applications 16, 3 (2007), 235--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. M. Srinivas and C. K. Mohan. 2015. Multi-level classification: A generic classification method for medical data sets. In Proceedings of the IEEE International Conference on E-Health Networking, Application Service. 6 pages.Google ScholarGoogle Scholar
  121. R. Srivastava. 2013. Research Developments in Computer Vision and Image Processing: Methodologies and Applications. IGI Global. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. J. Stefanowski. 2005. An experimental study of methods combining multiple classifiers—Diversified both by feature selection and bootstrap sampling. In Issues in the Representation and Processing of Uncertain and Imprecise Information. 337--354.Google ScholarGoogle Scholar
  123. M. M. Suarez-Alvarez, D. Pham, Y. Mikhail, and Y. I. Prostov. 2012. Statistical approach to normalization of feature vectors and clustering of mixed datasets. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 468, 2145 (2012), 2630--2652.Google ScholarGoogle Scholar
  124. Y. Sun. 2007. Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 6 (2007), 1035--1051. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Y. Sun, S. Goodison, J. Li, L. Liu, and W. Farmerie. 2007. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23, 1 (2007), 30--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Thomson Reuters. 2015. Web of Science. (2015). http://thomsonreuters.com/thomson-reuters-web-of-science/.Google ScholarGoogle Scholar
  127. J. M. Tomczak. 2013. Prediction of breast cancer recurrence using classification restricted Boltzmann machine with dropping. CoRR abs/1308.6324 (2013), 9 pages.Google ScholarGoogle Scholar
  128. H. Trevor, R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics.Google ScholarGoogle Scholar
  129. E. Trumbelj, Z. Bosnic, I. Kononenko, B. Zakotnik, and C. Kuhar. 2010. Explanation and reliability of prediction models: The case of breast cancer recurrence. Knowledge Information System 24 (2010), 305--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. N. Tsikriktsis. 2005. A review of techniques for treating missing data in OM survey research. Journal of Operations Management 24, 1 (2005), 53--62.Google ScholarGoogle ScholarCross RefCross Ref
  131. C. Van den Hurk. 2011. Unfavourable pattern of metastases in M0 breast cancer patients during 1978--2008: A population-based analysis of the Munich cancer registry. Breast Cancer Research and Treatment 128, 3 (2011), 795--805.Google ScholarGoogle ScholarCross RefCross Ref
  132. L. J. van ’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415 (2002), 530--536.Google ScholarGoogle ScholarCross RefCross Ref
  133. V. Vapnik. 1999. The Nature of Statistical Learning Theory (Information Science and Statistics) (2nd ed.). Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. A. Verikas, A. Gelzinis, and M. Bacauskiene. 2011. Mining data with random forests: A survey and results of new tests. Pattern Recognition 44, 2 (2011), 330--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. I. H. Witten and E. Frank. 2005. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. World Health Organization. 2012. GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Retrieved from http://globocan.iarc.fr.Google ScholarGoogle Scholar
  137. S. Zhang, Z. Qin, C. X. Ling, and S. Sheng. 2005. “Missing is useful”: Missing values in cost-sensitive decision trees. IEEE Transactions on Knowledge and Data Engineering 17, 12 (2005), 1689--1693. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. B. Zheng, S. Yoon, and S. S. Lam. 2014. Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications 41, 4, Part 1 (2014), 1476--1482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Z. H. Zhou and Y. Jiang. 2003. Medical diagnosis with c4.5 rule preceded by artificial neural network ensemble. IEEE Transactions on Information Technology in Biomedicine 7, 1 (2003), 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. M. D. Zio, U. Guarnera, and O. Luzi. 2007. Imputation through finite Gaussian mixture models. Computational Statistics and Data Analysis 51, 11 (2007), 5305--5316. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Predicting Breast Cancer Recurrence Using Machine Learning Techniques: A Systematic Review

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 49, Issue 3
          September 2017
          658 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/2988524
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 October 2016
          • Accepted: 1 August 2016
          • Revised: 1 May 2016
          • Received: 1 July 2015
          Published in csur Volume 49, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader