skip to main content
research-article
Public Access

Water Quality Monitoring Using Wireless Sensor Networks: Current Trends and Future Research Directions

Published:28 January 2017Publication History
Skip Abstract Section

Abstract

Water is essential for human survival. Although approximately 71% of the world is covered in water, only 2.5% of this is fresh water; hence, fresh water is a valuable resource that must be carefully monitored and maintained. In developing countries, 80% of people are without access to potable water. Cholera is still reported in more than 50 countries. In Africa, 75% of the drinking water comes from underground sources, which makes water monitoring an issue of key concern, as water monitoring can be used to track water quality changes over time, identify existing or emerging problems, and design effective intervention programs to remedy water pollution. It is important to have detailed knowledge of potable water quality to enable proper treatment and also prevent contamination. In this article, we review methods for water quality monitoring (WQM) from traditional manual methods to more technologically advanced methods employing wireless sensor networks (WSNs) for in situ WQM. In particular, we highlight recent developments in the sensor devices, data acquisition procedures, communication and network architectures, and power management schemes to maintain a long-lived operational WQM system. Finally, we discuss open issues that need to be addressed to further advance automatic WQM using WSNs.

References

  1. F. Adamo, F. Attivissimo, C. G. C. Carducci, and A. M. L. Lanzolla. 2015. A smart sensor network for sea water quality monitoring. IEEE Sensors Journal 15, 5, 2514--2522. Google ScholarGoogle ScholarCross RefCross Ref
  2. I. F. Akyildiz and E. P. Stuntebeck. 2006. Wireless underground sensor networks: Research challenges. Ad Hoc Networks 4, 6, 669--686. DOI:http://dx.doi.org/10.1016/j.adhoc.2006.04.003 Google ScholarGoogle ScholarCross RefCross Ref
  3. I. F. Akyildiz, P. Wang, and S.-C. Lin. 2016. SoftWater: Software-defined networking for next-generation underwater communication systems. Ad Hoc Networks 46, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Albaladejo, P. Sánchez, A. Iborra, F. Soto, J. A. López, and R. Torres. 2010. Wireless sensor networks for oceanographic monitoring: A systematic review. Sensors 10, 7, 6948--6968. Google ScholarGoogle ScholarCross RefCross Ref
  5. E. Aleisa. 2013. Wireless sensor networks framework for water resource management that supports QoS in the kingdom of Saudi Arabia. In Proceedings of the Conference on Ambient Systems, Networks, and Technologies (ANT’13). 232--239. DOI:http://dx.doi.org/10.1016/j.procs.2013.06.034 Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Alkandari, M. Alnasheet, Y. Alabduljader, and S. M. Moein. 2011. Wireless sensor network (WSN) for water monitoring system: Case study of Kuwait beaches. International Journal of Digital Information and Wireless Communications 1, 4, 709--717.Google ScholarGoogle Scholar
  7. M. K. Amruta and M. T. Satish. 2013. Solar powered water quality monitoring system using wireless sensor network. In Proceedings of the International Multi-Conference on Automation, Computing, Communication, Control, and Compressed Sensing (iMac4s’13). IEEE, Los Alamitos, CA, 281--285. DOI:http://dx.doi.org/10.1109/iMac4s.2013.6526423 Google ScholarGoogle ScholarCross RefCross Ref
  8. I. Amundson and X. D. Koutsoukos. 2009. A survey on localization for mobile wireless sensor networks. In Mobile Entity Localization and Tracking in GPS-Less Environments. Lecture Notes in Computer Science, Vol. 5801. Springer, 235--254. DOI:http://dx.doi.org/10.1007/978-3-642-04385-7_16 Google ScholarGoogle ScholarCross RefCross Ref
  9. Analytical Technology, Inc. 2015. Fast, Reliable Fluoride Monitoring! Retrieved November 12, 2016, from http://www.analyticaltechnology.com/analyticaltechnology/gas-water-monitors/product.aspx?ProductID=10768ImageID=1360.Google ScholarGoogle Scholar
  10. ATI Analytic Technologies. 2016. Measuring the Air We Breathe and the Water We Drink. Available at http://www.analyticaltechnology.com.Google ScholarGoogle Scholar
  11. J. A. R. Azevedo and F. E. S. Santos. 2012. Energy harvesting from wind and water for autonomous wireless sensor nodes. IET Circuits, Devices and Systems 6, 6, 413--420. DOI:http://dx.doi.org/10.1049/iet-cds.2011.0287 Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Bartram and R. Ballance. 1996. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. E8FN Spon, London, UK.Google ScholarGoogle Scholar
  13. M. S. BenSaleh, S. M. Qasim, A. M. Obeid, and A. Garcia-Ortiz. 2013. A review on wireless sensor network for water pipeline monitoring applications. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (CTS’13). IEEE, Los Alamitos, CA, 128--131. Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Bhardwaj, K. K. Gupta, and R. Gupta. 2015. A review of emerging trends on water quality measurement sensors. In Proceedings of the International Conference on Technologies for Sustainable Development (ICTSD’15). IEEE, Los Alamitos, CA, 1--6. DOI:http://dx.doi.org/10.1109/ICTSD.2015.7095919 Google ScholarGoogle ScholarCross RefCross Ref
  15. S. Bhattacharya, S. Sridevi, and R. Pitchiah. 2012. Indoor air quality monitoring using wireless sensor network. In Proceedings of the 6th International Conference on Sensing Technology (ICST’12). IEEE, Los Alamitos, CA, 422--427. DOI:http://dx.doi.org/10.1109/ICSensT.2012.6461713 Google ScholarGoogle ScholarCross RefCross Ref
  16. W. Bourgeois, J. E. Burgess, and R. M. Stuetz. 2001. On-line monitoring of wastewater quality: A review. Journal of Chemical Technology and Biotechnology 76, 4, 337--348. Google ScholarGoogle ScholarCross RefCross Ref
  17. W. Bourgeois, A.-C. Romain, J. Nicolas, and R. M. Stuetz. 2003. The use of sensor arrays for environmental monitoring: Interests and limitations. Journal of Environmental Monitoring 5, 6, 852--860. Google ScholarGoogle ScholarCross RefCross Ref
  18. D. G. Burke and J. Allenby. 2014. Low Cost Water Quality Monitoring Needs Assessment. Retrieved November 12, 2016, from http://burkeassociates.biz/low-cost-water-quality-monitoring-needs-assessment/.Google ScholarGoogle Scholar
  19. J. V. Capella, A. Bonastre, R. Ors, and M. Peris. 2013. In line river monitoring of nitrate concentration by means of a wireless sensor network with energy harvesting. Sensors and Actuators B: Chemical 177, 419--427. Google ScholarGoogle ScholarCross RefCross Ref
  20. D. Carboni, A. Gluhak, J. A. McCann, and T. H. Beach. 2016. Contextualising water use in residential settings: A survey of non-intrusive techniques and approaches. Sensors 16, 5, 738.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. L. Carroll, S. Cochrane, R. Fieler, R. Velvin, and P. White. 2003. Organic enrichment of sediments from salmon farming in Norway: Environmental factors, management practices, and monitoring techniques. Aquaculture 226, 14, 165--180. DOI:http://dx.doi.org/10.1016/S0044-8486(03)00475-7 Google ScholarGoogle ScholarCross RefCross Ref
  22. CENSAR Technologies. 2016. Drinking Water Quality—Distribution System Monitoring—Water Plants. Retrieved November 12, 2016, from http://www.censar.com.Google ScholarGoogle Scholar
  23. N. Chaamwe. 2010. Wireless sensor networks for water quality monitoring: A case of Zambia. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE’10). IEEE, Los Alamitos, CA, 1--6. DOI:http://dx.doi.org/10.1109/ICBBE.2010.5515792 Google ScholarGoogle ScholarCross RefCross Ref
  24. D. Chapman. 1996. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring (2nd. ed.). University Press, Cambridge, UK. Google ScholarGoogle ScholarCross RefCross Ref
  25. C. Chen, X. Jun-Ming, and G. Hui-Fang. 2011. Polluted water monitoring based on wireless sensor. In Proceedings of the International Conference on Electronics, Communications, and Control (ICECC’11). IEEE, Los Alamitos, CA, 961--963. DOI:http://dx.doi.org/10.1109/ICECC.2011.6066393 Google ScholarGoogle ScholarCross RefCross Ref
  26. X. Chen, K. Makki, K. Yen, and N. Pissinou. 2009. Sensor network security: A survey. IEEE Communications Surveys Tutorials 11, 2, 52--73. DOI:http://dx.doi.org/10.1109/SURV.2009.090205 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. W.-Y. Chung and J.-H. Yoo. 2015. Remote water quality monitoring in wide area. Sensors and Actuators B: Chemical 215, 51--57. Google ScholarGoogle ScholarCross RefCross Ref
  28. Connecticut Department of Public Health. 2015. Manganese in Drinking Water. Retrieved November 12, 2016, from http://www.ct.gov/dph/lib/dph/drinking_water/pdf/manganese.pdf.Google ScholarGoogle Scholar
  29. L. E. Cordova-Lopez, A. Mason, J. D. Cullen, A. Shaw, and A. I. Al-Shamma’a. 2007. Online vehicle and atmospheric pollution monitoring using GIS and wireless sensor networks. In Journal of Physics: Conference Series, Vol. 76. IOP Publishing Ltd, Bristol, UK, 12--19. DOI:http://dx.doi.org/10.1088/1742-6596/76/1/012019 Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Cotruvo. 2011. Hardness in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. Retrieved November 12, 2016, from http://www.who.int/water_sanitation_health/dwq/chemicals/hardness.pdf.Google ScholarGoogle Scholar
  31. C. E. H. Curiel, V. H. B. Baltazar, and J. H. P. Ramírez. 2016. Wireless sensor networks for water quality monitoring: Prototype design. International Journal of Environmental, Chemical, Ecological, Geological, and Geophysical Engineering 10, 2, 158--163.Google ScholarGoogle Scholar
  32. L. Delauney, C. Compere, and M. Lehaitre. 2010. Biofouling protection for marine environmental sensors. Ocean Science 6, 2, 503--511. Google ScholarGoogle ScholarCross RefCross Ref
  33. Y. Derbew and M. Libsie. 2014. A wireless sensor network framework for large-scale industrial water pollution monitoring. In Proceedings of the IST-Africa Conference. IEEE, Los Alamitos, CA, 1--8. DOI:http://dx.doi.org/10.1109/ISTAFRICA.2014.6880619 Google ScholarGoogle ScholarCross RefCross Ref
  34. S. Dhawan. 2007. Analogy of promising wireless technologies on different frequencies: Bluetooth, WiFi, and WiMAX. In Proceedings of the 2nd International Conference on Wireless Broadband and Ultra Wideband Communications. IEEE, Los Alamitos, CA, 14. DOI:http://dx.doi.org/10.1109/AUSWIRELESS.2007.27 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Dong, G. Wang, H. Yan, J. Xu, and X. Zhang. 2015. A survey of smart water quality monitoring system. Environmental Science and Pollution Research 22, 7, 4893--4906. Google ScholarGoogle ScholarCross RefCross Ref
  36. M. Eckenfelder. 2001. Government of British Columbia, Environmental Protection Division: Water Quality Guidelines for Temperature. Retrieved November 12, 2016, from http://www.env.gov.bc.ca/wat/wq/BCguidelines/temptech/temperature.html.Google ScholarGoogle Scholar
  37. D. Estrin, L. Girod, G. Pottie, and M. Srivastava. 2001. Instrumenting the world with wireless sensor networks. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4. IEEE, Los Alamitos, CA, 2033--2036. DOI:http://dx.doi.org/10.1109/ICASSP.2001.940390 Google ScholarGoogle ScholarCross RefCross Ref
  38. D. Estrin, A. Sayeed, and M. Srivastava. 2002. Wireless sensor networks. In Proceedings of the 8th ACM International Conference on Mobile Computing and Networking (MobiCom’02), Vol. 255. ACM, Atlanta, GA.Google ScholarGoogle Scholar
  39. K. Farrell-Poe. 2005. Water Quality and Monitoring. Available at https://cals.arizona.edu/watershedsteward/resources/docs/guide/(10)Water%20Quality.pdf.Google ScholarGoogle Scholar
  40. A. Faustine, A. Mvuma, H. Mongi, M. Gabriel, A. Tenge, and S. Kucel. 2014. Wireless sensor networks for water quality monitoring and control within Lake Victoria basin: Prototype development. Wireless Sensor Network 6, 12, 281--290. DOI:http://dx.doi.org/10.4236/wsn.2014.612027 Google ScholarGoogle ScholarCross RefCross Ref
  41. D. Feng, L. Lu, Y. Yuan-Wu, G. Li, S. Li, and G. Feng. 2014. Device-to-device communications in cellular networks. IEEE Communications Magazine 52, 4, 49--55. Google ScholarGoogle ScholarCross RefCross Ref
  42. M. S. Garcia, D. Carvalho, O. Zlydareva, C. Muldoon, B. F. Masterson, M. J. O’Grady, W. G. Meijer, J. J. O’Sullivan, and Gregory M. P. O’Hare. 2012. An Agent-Based Wireless Sensor Network for Water Quality Data Collection. Springer, Berlin, Germany, 454--461. DOI:http://dx.doi.org/10.1007/978-3-642-35377-2_63 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. F. Ge and Y. Wang. 2016. Energy efficient networks for monitoring water quality in subterranean rivers. Sustainability 8, 6, 526.Google ScholarGoogle ScholarCross RefCross Ref
  44. H. B. Glasgow, J. M. Burkholder, R. E. Reed, A. J. Lewitus, and J. E. Kleinman. 2004. Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. Journal of Experimental Marine Biology and Ecology 300, 1, 409--448. Google ScholarGoogle ScholarCross RefCross Ref
  45. L. M. Goddijn and M. White. 2006. Using a digital camera for water quality measurements in Galway Bay. Estuarine, Coastal and Shelf Science 66, 3, 429--436. Google ScholarGoogle ScholarCross RefCross Ref
  46. Hach. 2016. Leading the Way in Water Analytics. Available at http://www.hach.com.Google ScholarGoogle Scholar
  47. D. G. Hadjimitsis, M. G. Hadjimitsis, K. Themistocleous, and A. Agapiou. 2009. Integration of micro-sensor technology and remote sensing for monitoring coastal water quality in a municipal beach and other areas in Cyprus. In Proceedings of SPIE 7472: Remote Sensing for Agriculture, Ecosystems, and Hydrology XI. 1--8. DOI:http://dx.doi.org/10.1117/12.830582 Google ScholarGoogle ScholarCross RefCross Ref
  48. J. Hall, A. D. Zaffiro, R. B. Marx, P. C. Kefauver, E. R. Krishnan, R. C. Haught, and J. G. Herrmann. 2007. On-line water quality parameters as indicators of distribution system contamination. Journal of the American Water Works Association 99, 1, 66--77.Google ScholarGoogle ScholarCross RefCross Ref
  49. Q.-D. Ho, Y. Gao, and T. Le-Ngoc. 2013. Challenges and research opportunities in wireless communication networks for smart grid. IEEE Wireless Communications 20, 3, 89--95. Google ScholarGoogle ScholarCross RefCross Ref
  50. M. Holmberg, F. A. M. Davide, C. Di Natale, A. D’Amico, F. Winquist, and I. Lundström. 1997. Drift counteraction in odour recognition applications: Lifelong calibration method. Sensors and Actuators B: Chemical 42, 3, 185--194. Google ScholarGoogle ScholarCross RefCross Ref
  51. In-Situ. 2016. Water Monitoring Equipment, Water Monitoring Testing, and More. Available at https://in-situ.com.Google ScholarGoogle Scholar
  52. Trupti Jadhav, Ulka Patil, Sonali Masrankar, Shweta Mestry, Manjiri Pathak, Vijaya Jadhav, and Savita Chavan. 2016. Analysing quality of water and soil using WSN. Imperial Journal of Interdisciplinary Research 2, 5, 1033--1035.Google ScholarGoogle Scholar
  53. P. Jiang, H. Xia, Z. He, and Z. Wang. 2009. Design of a water environment monitoring system based on wireless sensor networks. Sensors 9, 8, 6411--6434. Google ScholarGoogle ScholarCross RefCross Ref
  54. N. Jin, R. Ma, Y. Lv, X. Lou, and Q. Wei. 2010. A novel design of water environment monitoring system based on WSN. In Proceedings of the 2010 International Conference on Computer Design and Applications (ICCDA’10), Vol. 2. IEEE, Los Alamitos, CA, V2-593--V2-597. DOI:http://dx.doi.org/10.1109/ICCDA.2010.5541305 Google ScholarGoogle ScholarCross RefCross Ref
  55. Y. Kaizu, M. Iio, H. Yamada, and N. Noguchi. 2011. Development of unmanned airboat for water-quality mapping. Biosystems Engineering 109, 4, 338--347. Google ScholarGoogle ScholarCross RefCross Ref
  56. E. Karami, F. M. Bui, and H. H. Nguyen. 2012. Multisensor data fusion for water quality monitoring using wireless sensor networks. In Proceedings of the 4th International Conference on Communications and Electronics (ICCE’12). IEEE, Los Alamitos, CA, 80--85. DOI:http://dx.doi.org/10.1109/CCE.2012.6315875 Google ScholarGoogle ScholarCross RefCross Ref
  57. F. A. Katsriku, M. Wilson, G. G. Yamoah, J. D. Abdulai, B. M. A. Rahman, and K. T. V. Grattan. 2015. Framework for time relevant water monitoring system. In Computing in Research and Development in Africa. Springer, Basel, Switzerland, 3--19. DOI:http://dx.doi.org/10.1007/978-3-319-08239-4_1 Google ScholarGoogle ScholarCross RefCross Ref
  58. K. K. Khedo, R. Perseedoss, and A. Mungur. 2010. A wireless sensor network air pollution monitoring system. arXiv:1005.1737. http://arxiv.org/abs/1005.1737.Google ScholarGoogle Scholar
  59. O. Korostynska, A. Mason, and A. I. Al-Shamma’a. 2013. Monitoring pollutants in wastewater: Traditional lab based versus modern real-time approaches. In Smart Sensors for Real-Time Water Quality Monitoring. Vol. 4. Springer, Berlin, Germany, 1--24. DOI:http://dx.doi.org/10.1007/978-3-642-37006-9_1 Google ScholarGoogle ScholarCross RefCross Ref
  60. Laird Technologies. 2012. Understanding Range for RF Devices. Retrieved November, 2016, from http://www.lairdtech.com/solutions/white-papers/understanding-range-rf-devices.Google ScholarGoogle Scholar
  61. C.-T. Lee and K.-L. Wong. 2010. Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/UMTS operation in the mobile phone. IEEE Transactions on Antennas and Propagation 58, 7, 2479--2483. Google ScholarGoogle ScholarCross RefCross Ref
  62. Libelium. 2014. Smart Water Sensors to Monitor Water Quality in Rivers, Lakes and the Sea. Retrieved November 12, 2016, from http://www.libelium.com/smart-water-sensors-monitor-water-quality-leakages-wastes-in-rivers-lakes-sea.Google ScholarGoogle Scholar
  63. Libelium. 2016. Connecting Sensors to the Cloud. Available at http://www.libelium.com.Google ScholarGoogle Scholar
  64. K. Loizou and E. Koutroulis. 2016. Water level sensing: State of the art review and performance evaluation of a low-cost measurement system. Measurement 89, 204--214. Google ScholarGoogle ScholarCross RefCross Ref
  65. R. Luethi and M. Phillips. 2016. Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpretation. Geographica Helvetica 71, 121--131. Google ScholarGoogle ScholarCross RefCross Ref
  66. C. Ó. Mathúna, T. O’Donnell, R. V. Martinez-Catala, J. Rohan, and B. O’Flynn. 2008. Energy scavenging for long-term deployable wireless sensor networks. Talanta 75, 3, 613--623. Google ScholarGoogle ScholarCross RefCross Ref
  67. M. L. McFarland and T. L. Provin. 1999. Hydrogen Sulfide in Drinking Water: Causes and Treatment Alternatives. Retrieved November 12, 2016, from http://soiltesting.tamu.edu/publications/L-5312.pdf.Google ScholarGoogle Scholar
  68. D. Mo, Y. Zhao, and S. Chen. 2012. Automatic measurement and reporting system of water quality based on GSM. In Proceedings of the 2012 2nd International Conference on Intelligent System Design and Engineering Application (ISDEA’12). IEEE, Los Alamitos, CA, 1007--1010. DOI:http://dx.doi.org/10.1109/ISdea.2012.595 Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. A. H. Moon, U. Iqbal, and G. M. Bhat. 2015. Secured data acquisition system for smart water applications using WSN. Indian Journal of Science and Technology 9, 10, 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  70. R. Morais, S. G. Matos, M. A. Fernandes, A. L. G. Valente, S. F. S. P. Soares, P. J. S. G. Ferreira, and M. J. C. S. Reis. 2008. Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and Electronics in Agriculture 64, 2, 120--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Mouser Electronics, Inc. 2015. RF Wireless Technology. Retrieved November 12, 2016, from http://www.mouser.com/applications/rf-wireless-technology/.Google ScholarGoogle Scholar
  72. K. Murphy, B. Heery, T. Sullivan, D. Zhang, L. Paludetti, K. T. Lau, D. Diamond, E. Costa, and F. Regan. 2015. A low-cost autonomous optical sensor for water quality monitoring. Talanta 132, 520--527. Google ScholarGoogle ScholarCross RefCross Ref
  73. M. A. Nasirudin, U. N. Za’bah, and O. Sidek. 2011. Fresh water real-time monitoring system based on wireless sensor network and GSM. In Proceedings of the IEEE Conference on Open Systems (ICOS’11). IEEE, Los Alamitos, CA, 354--357. DOI:http://dx.doi.org/10.1109/ICOS.2011.6079290 Google ScholarGoogle ScholarCross RefCross Ref
  74. N. Nasser, A. Ali, L. Karim, and S. Belhaouari. 2013. An efficient wireless sensor network-based water quality monitoring system. In Proceedings of the 2013 ACS International Conference on Computer Systems and Applications (AICCSA’13). IEEE, Los Alamitos, CA, 1--4. Google ScholarGoogle ScholarCross RefCross Ref
  75. T.-D. Nguyen, T. T. Thanh, L.-L. Nguyen, and H.-T. Huynh. 2015. On the design of energy efficient environment monitoring station and data collection network based on ubiquitous wireless sensor networks. In Proceedings of the 2015 IEEE RIVF International Conference on Computing and Communication Technologies-Research, Innovation, and Vision for the Future (RIVF’15). IEEE, Los Alamitos, CA, 163--168.Google ScholarGoogle Scholar
  76. R. Noble and R. Weisberg. 2005. A review of technologies for rapid detection of bacteria in recreational waters. Journal of Water and Health 3, 381--392. Google ScholarGoogle ScholarCross RefCross Ref
  77. E. O’Connor, D. Zhang, A. F. Smeaton, N. E. O’Connor, and F. Regan. 2012. Multi-modal sensor networks for more effective sensing in Irish coastal and freshwater environments. In Proceedings of the 2012 Oceans Conference. IEEE, Los Alamitos, CA, 1--9. DOI:http://dx.doi.org/10.1109/OCEANS.2012.6404894 Google ScholarGoogle ScholarCross RefCross Ref
  78. B. O’Flyrm, R. Martinez, J. Cleary, C. Slater, F. Regan, D. Diamond, and H. Murphy. 2007. SmartCoast: A wireless sensor network for water quality monitoring. In Proceedings of the 32nd IEEE Conference on Local Computer Networks (LCN’07). IEEE, Los Alamitos, CA, 815--816. DOI:http://dx.doi.org/10.1109/LCN.2007.34 Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. C. G. Panayiotou, D. Fatta, and M. P. Michaelides. 2005. Environmental Monitoring Using Wireless Sensor Networks. Technical Report. Department of Electrical Engineering, University of Cyprus, Nicosia.Google ScholarGoogle Scholar
  80. L. Parra, E. Karampelas, S. Sendra, J. Lloret, and J. J. P. C. Rodrigues. 2015. Design and deployment of a smart system for data gathering in estuaries using wireless sensor networks. In Proceedings of the 2015 International Conference on Computer, Information, and Telecommunication Systems (CITS’15). IEEE, Los Alamitos, CA, 1--5. Google ScholarGoogle ScholarCross RefCross Ref
  81. S. Pattem, B. Krishnamachari, and R. Govindan. 2008. The impact of spatial correlation on routing with compression in wireless sensor networks. ACM Transactions on Sensor Networks 4, 4, Article No. 24. DOI:http://dx.doi.org/10.1145/1387663.1387670 Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. J. Peng. 2009. The design of wetland water environmental monitoring system using digital video based on wireless sensor networks. In Proceedings of the WRI International Conference on Communications and Mobile Computing (CMC’09), Vol. 2. IEEE, Los Alamitos, CA, 391--395. DOI:http://dx.doi.org/10.1109/CMC.2009.220 Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. D. P. Pereira, W. R. A. Dias, M. Braga, R. D. S. Barreto, C. M. S. Figueiredo, and V. Brilhante. 2008. Model to integration of RFID into wireless sensor network for tracking and monitoring animals. In Proceedings of the 11th IEEE International Conference on Computational Science and Engineering (CSE’08). IEEE, Los Alamitos, CA, 125--131. DOI:http://dx.doi.org/10.1109/CSE.2008.25 Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. S. Pobering and N. Schwesinger. 2004. A novel hydropower harvesting device. In Proceedings of the 2004 International Conference on MEMS, NANO, and Smart Systems (ICMENS’04). IEEE, Los Alamitos, CA, 480--485. Google ScholarGoogle ScholarCross RefCross Ref
  85. O. Postolache, J. D. Pereira, and P. S. Girão. 2014. Wireless sensor network-based solution for environmental monitoring: Water quality assessment case study. IET Science, Measurement, and Technology 8, 6, 610--616. Google ScholarGoogle ScholarCross RefCross Ref
  86. M. Rahnema. 1993. Overview of the GSM system and protocol architecture. IEEE Communications Magazine 31, 4, 92--100. DOI:http://dx.doi.org/10.1109/35.210402 Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. A. S. Rao, S. Marshall, J. Gubbi, M. Palaniswami, R. Sinnott, and V. Pettigrovet. 2013. Design of low-cost autonomous water quality monitoring system. In Proceedings of the Conference on Advances in Computing, Communications, and Informatics (ICACCI’13). IEEE, Los Alamitos, CA, 14--19. DOI:http://dx.doi.org/10.1109/ICACCI.2013.6637139 Google ScholarGoogle ScholarCross RefCross Ref
  88. N. Rapousis, M. Katsarakis, and M. Papadopouli. 2015. QoWater: A crowd-sourcing approach for assessing the water quality. In Proceedings of the ACM Conference on Cyber-Physical Systems for Smart Water Networks (CySWater’15). ACM, New York, NY, Article No. 11. DOI:http://dx.doi.org/10.1145/2738935.2738946 Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Z. Rasin and M. R. Abdullah. 2009. Water quality monitoring system using ZigBee based wireless sensor network. International Journal of Engineering and Technology 9, 10, 24--28. Google ScholarGoogle ScholarCross RefCross Ref
  90. F. Regan, A. Lawlor, B. O. Flynn, J. Torres, R. Martinez-Catala, C. O’Mathuna, and J. Wallace. 2009. A demonstration of wireless sensing for long term monitoring of water quality. In Proceedings of the Conference on Local Computer Networks. IEEE, Los Alamitos, CA, 819--825. DOI:http://dx.doi.org/10.1109/LCN.2009.5355047 Google ScholarGoogle ScholarCross RefCross Ref
  91. C. Ritter, M. Cottingham, J. Leventhal, and A. Mickelson. 2014. Remote delay tolerant water quality montoring. In Proceedings of the 2014 IEEE Global Humanitarian Technology Conference (GHTC’14). IEEE, Los Alamitos, CA, 462--468. DOI:http://dx.doi.org/10.1109/GHTC.2014.6970323 Google ScholarGoogle ScholarCross RefCross Ref
  92. A.-C. Romain, P. André, and J. Nicolas. 2002. Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment. Sensors and Actuators B: Chemical 84, 2, 271--277.Google ScholarGoogle ScholarCross RefCross Ref
  93. T. G. Sanders. 1983. Design of Networks for Monitoring Water Quality. Water Resources Publication, Littleton, CO.Google ScholarGoogle Scholar
  94. S. S. Sandha, S. Randhawa, and B. Srivastava. 2016. Blue Water: A Common Platform to Put Water Quality Data in India to Productive Use by Integrating Historical and Real-Time Sensing Data. IBM Research Report. IBM. Google ScholarGoogle ScholarCross RefCross Ref
  95. K. E. Sawaya, L. G. Olmanson, N. J. Heinert, P. L. Brezonik, and M. E. Bauer. 2003. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery. Remote Sensing of Environment 88, 1, 144--156.Google ScholarGoogle ScholarCross RefCross Ref
  96. S::can. 2016. S::can Home Page. Retrieved November 12, 2016 from http://www.s-can.at. Google ScholarGoogle ScholarCross RefCross Ref
  97. L. A. Seders, C. A. Shea, M. D. Lemmon, P. A. Maurice, and J. W. Talley. 2007. LakeNet: An integrated sensor network for environmental sensing in lakes. Environmental Engineering Science 24, 2, 183--191. Google ScholarGoogle ScholarCross RefCross Ref
  98. D. Shin, S. Y. Na, J. Y. Kim, and S.-J. Baek. 2007. Sonar localization using ubiquitous sensor network for water pollution monitoring fish robots. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology. IEEE, Los Alamitos, CA, 80--85. DOI:http://dx.doi.org/10.1109/ISSPIT.2007.4458027Google ScholarGoogle Scholar
  99. Tongxin Shu. 2016. Power Management in a Sensor Network for Automated Water Quality Monitoring. Ph.D. Dissertation. University of British Columbia.Google ScholarGoogle Scholar
  100. B. Sidhu, H. Singh, and A. Chhabra. 2007. Emerging wireless standards: WiFi, ZigBee and WiMAX. World Academy of Science, Engineering and Technology 25, 2007, 308--313. Google ScholarGoogle ScholarCross RefCross Ref
  101. S. Silva, H. N. Nguyen, V. Tiporlini, and K. Alameh. 2011. Web based water quality monitoring with sensor network: Employing ZigBee and WiMax technologies. In Proceedings of the Conference on High Capacity Optical Networks and Enabling Technologies (HONET’11). IEEE, Los Alamitos, CA, 138--142. DOI:http://dx.doi.org/10.1109/HONET.2011.6149804 Google ScholarGoogle ScholarCross RefCross Ref
  102. M. V. Storey, B. van der Gaag, and B. P. Burns. 2011. Advances in on-line drinking water quality monitoring and early warning systems. Water Research 45, 2, 741--747. Google ScholarGoogle ScholarCross RefCross Ref
  103. R. O. Strobl and P. D. Robillard. 2008. Network design for water quality monitoring of surface freshwaters: A review. Journal of Environmental Management 87, 4, 639--648. Google ScholarGoogle ScholarCross RefCross Ref
  104. G. Suciu, V. Suciu, C. Dobre, and C. Chilipirea. 2015. Tele-monitoring system for water and underwater environments using cloud and big data systems. In Proceedings of the 2015 20th International Conference on Control Systems and Computer Science. 809--813. DOI:http://dx.doi.org/10.1109/CSCS.2015.31 Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. B. Sun, F. Ahmed, F. Sun, Q. Qian, and Y. Xiao. 2016. Water quality monitoring using STORM 3 data loggers and a wireless sensor network. International Journal of Sensor Networks 20, 1, 26--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Sun Microsystems. 2007. Sun Small Programmable Object Technology (SPOT). Retrieved November 12, 2016, from http://academic.fuseyism.com/ambassador/slides/sunspot.pdf.Google ScholarGoogle Scholar
  107. T. V. Suslow. 2004. Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation. Technical Report. ANR Publication 8149. Division of Agriculture and Natural Resources, University of California. Google ScholarGoogle Scholar
  108. R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. 2004. Lessons from a sensor network expedition. In Wireless Sensor Networks. Lecture Notes in Computer Science, Vol. 2920. Springer, 307--322. Google ScholarGoogle ScholarCross RefCross Ref
  109. H.-P. Tan, R. Diamant, W. K. G. Seah, and M. Waldmeyer. 2011. A survey of techniques and challenges in underwater localization. Ocean Engineering 38, 14 (2011), 1663--1676. Google ScholarGoogle ScholarCross RefCross Ref
  110. G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers, and T. R. Wel. 2001. The energy harvesting eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering 26, 4, 539--547.Google ScholarGoogle ScholarCross RefCross Ref
  111. Technical Associates. 2016. Technical Associates Home Page. Retrieved November 12, 2016, from http://www.tech-associates.com.Google ScholarGoogle Scholar
  112. TPS Pty Ltd. 2008. 90-FLT Sensor. Retrieved November, 2016, from http://tps.com.au/products/products/combination-and-multiparameter-meters/portable-conductivity-salinity-tds-meters/90-fl-series.html. Google ScholarGoogle ScholarCross RefCross Ref
  113. G. Tuna, O. Arkoc, and K. Gulez. 2013. Continuous monitoring of water quality using portable and low-cost approaches. International Journal of Distributed Sensor Networks 2013, Article No. 249598. DOI:http://dx.doi.org/10.1155/2013/249598Google ScholarGoogle Scholar
  114. G. Tuna, B. Nefzi, O. Arkoc, and S. M. Potirakis. 2014. Wireless sensor network-based water quality monitoring system. Key Engineering Materials 605, 47--50. DOI:http://dx.doi.org/10.4028/ www.scientific.net/KEM.605.47Google ScholarGoogle ScholarCross RefCross Ref
  115. United Nations. 2005. United Nations Environment Programme: Operational Guide for Data Submission. Retrieved November 12, 2016, from http://www.unep.org/gemswater/Portals/24154/pdfs/op_guide_for_data_2005.pdf.Google ScholarGoogle Scholar
  116. Universe Today. 2015. What Percent of Earth Is Water? Retrieved November 12, 2016, from http://www.universetoday.com/65588/what-percent-of-earth-is-water/.Google ScholarGoogle Scholar
  117. U.S. EPA. 2015a. Online Water Quality Monitoring Primer for Water Quality Surveillance and Response Systems. Retrieved November 12, 2016, from http://www.epa.gov/sites/production/files/2015-06/documents/online_water_quality_monitoring_primer.pdf.Google ScholarGoogle Scholar
  118. U.S. EPA. 2015b. Water Quality Surveillance and Response System Fact Sheet and Primer. Retrieved November 12, 2016, from http://water.epa.gov/infrastructure/watersecurity/lawsregs/upload/epa817b15002.pdf.Google ScholarGoogle Scholar
  119. USGS. 2015. The World’s Water. Retrieved November 12, 2016, from http://water.usgs.gov/edu/earthwherewater.html.Google ScholarGoogle Scholar
  120. H. van Niekerk. 2004. U. N. E. P. Global Environmental Monitoring System/Water Programme: South African Monitoring Programme Design. Retrieved November 12, 2016, from https://www.dwaf.gov.za/iwqs/water_quality/GEMS/South_African_UNEP_GEMSWater_Monitoring_Programme.pdf.Google ScholarGoogle Scholar
  121. S. Verma and Prachi. 2012. Wireless sensor network application for water quality monitoring in India. In Proceedings of the National Conference on Computing and Communication Systems (NCCCS’12). IEEE, Los Alamitos, CA, 1--7. DOI:http://dx.doi.org/10.1109/NCCCS.2012.6412990 Google ScholarGoogle ScholarCross RefCross Ref
  122. WA Health. 2012. Sodium in Drinking Water. (2012). Retrieved November, 2016 from http://ww2.health.wa.gov.au/Articles/S_T/Sodium-in-drinking-water.Google ScholarGoogle Scholar
  123. T. R. Wagh and A. P. Rao. 2014. River monitoring an application for wireless sensor network platform. International Journal of Emerging Technology and Advanced Engineering 4, 11, 511--515.Google ScholarGoogle Scholar
  124. R. J. Wagner, R. W. Boulger Jr., C. J. Oblinger, and B. A. Smith. 2006. Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting. Technical Report. U.S. Department of the Interior, Washington, DC.Google ScholarGoogle Scholar
  125. D. Wang, R. Xu, X. Hu, and W. Su. 2016. Energy-efficient distributed compressed sensing data aggregation for cluster-based underwater acoustic sensor networks. International Journal of Distributed Sensor Networks 12, 3, Article No. 8197606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. J. Wang, X.-l. Ren, Y.-l. Shen, and S.-y. Liu. 2010. A remote wireless sensor networks for water quality monitoring. In Proceedings of the Asia-Pacific Conference on Innovative Computing and Communication and the International Conference on Information Technology and Ocean Engineering (CICC-ITOE’10). IEEE, Los Alamitos, CA, 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. X. Wang, L. Ma, and H. Yang. 2011. Online water monitoring system based on ZigBee and GPRS. Procedia Engineering, 2680--2684. DOI:http://dx.doi.org/10.1016/j.proeng.2011.08.504 Google ScholarGoogle ScholarCross RefCross Ref
  128. Y. Wang, G. Attebury, and B. Ramamurthy. 2006. A survey of security issues in wireless sensor networks. IEEE Communications Surveys and Tutorials 8, 2, 2--23. DOI:http://dx.doi.org/10.1109/COMST.2006.315852 Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Z. Wang, Q. Wang, and X. Hao. 2009. The design of the remote water quality monitoring system based on WSN. In Proceedings of the 5th International Conference on Wireless Communications, Networking, and Mobile Computing (WiCom’09). IEEE, Los Alamitos, CA, 1--4. DOI:http://dx.doi.org/10.1109/WICOM.2009.5303974Google ScholarGoogle Scholar
  130. WaterLOG. 2016. WaterLOG Home Page. Retrieved November 12, 2016, from http://www.waterlog.com.Google ScholarGoogle Scholar
  131. WHO. 2003. Total Dissolved Solids in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. Retrieved November 12, 2016, from http://www.who.int/water_sanitation_health/dwq/chemicals/tds.pdf.Google ScholarGoogle Scholar
  132. WHO (Ed.). 2011. Guidelines for Drinking-Water Quality (4th ed.). WHO Press, Geneva, Switzerland.Google ScholarGoogle Scholar
  133. WiFi Direct. 2015. NFC vs Bluetooth vs Wifi Direct: Comparison, Advantages and Disadvantages. Retrieved November 12, 2016, from http://www.itechwhiz.com/2014/01/nfc-bluetooth-Wifidirect-comparison-differences.html. Google ScholarGoogle ScholarCross RefCross Ref
  134. G. Wiranto, G. A. Mambu, Hiskia, I. D. P. Hermida, and S. Widodo. 2015. Design of online data measurement and automatic sampling system for continuous water quality monitoring. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA’15). IEEE, Los Alamitos, CA, 2331--2335. DOI:http://dx.doi.org/10.1109/ICMA.2015.7237850 Google ScholarGoogle ScholarCross RefCross Ref
  135. G. Xu, W. Shen, and X. Wang. 2014. Applications of wireless sensor networks in marine environment monitoring: A survey. Sensors 14, 9, 16932--16954.Google ScholarGoogle ScholarCross RefCross Ref
  136. Xylem Inc. 2015a. 10 Tips to Prevent Biofouling on Water Quality Instruments. Retrieved November 12, 2016, from https://www.ysi.com/File%20Library/Documents/Tips/E108-Antifouling-Tips-Book.pdf.Google ScholarGoogle Scholar
  137. Xylem Inc. 2015b. Water Quality Instrumentation. Retrieved November 12, 2016, from http://www.globalw.com/catalog_wq.html. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. S. G. S. Yadav, A. Chitra, and C. L. Deepika. 2015. Reviewing the process of data fusion in wireless sensor network: A brief survey. International Journal of Wireless and Mobile Computing 8, 2, 130--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. S.-C. Yang and Y. Pan. 2010. The application of the wireless sensor network (WSN) in the monitoring of Fushun Reach River in China. In Proceedings of the 2nd International Conference on Computer and Network Technology (ICCNT’10). IEEE, Los Alamitos, CA, 331--333. DOI:http://dx.doi.org/10.1109/ICCNT.2010.70 Google ScholarGoogle ScholarCross RefCross Ref
  140. X. Yang, K. G. Ong, W. R. Dreschel, K. Zeng, C. S. Mungle, and C. A. Grimes. 2002. Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment. Sensors 2, 11, 455--472.Google ScholarGoogle ScholarCross RefCross Ref
  141. G. Ye and K. Soga. 2011. Energy harvesting from water distribution systems. Journal of Energy Engineering 7--17.Google ScholarGoogle Scholar
  142. YSI. 2016. Water Quality Sampling and Monitoring. Available at https://www.ysi.com. Google ScholarGoogle ScholarCross RefCross Ref
  143. R. Yue and T. Ying. 2011. A water quality monitoring system based on wireless sensor network and solar power supply. In Proceedings of the IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER’11). IEEE, Los Alamitos, CA, 126--129. DOI:http://dx.doi.org/10.1109/CYBER.2011.6011777Google ScholarGoogle Scholar
  144. Zap Technologies. 2016. Detect. Respond. Available at http://www.zapstechnologies.com. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. M. Zennaro, A. Floros, G. Dogan, T. Sun, Z. Cao, C. Huang, M. Bahader, H. Ntareme, and A. Bagula. 2009. On the design of a water quality wireless sensor network (WQWSN): An application to water quality monitoring in Malawi. In Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’09). IEEE, Los Alamitos, CA, 330--336. DOI:http://dx.doi.org/10.1109/ICPPW.2009.57 Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. A. Zhan, G. Chen, and W. Wang. 2009. Utilizing automatic underwater vehicles to prolong the lifetime of underwater sensor networks. In Proceedings of the 18th International Conference on Computer Communications and Networks (ICCCN’09). IEEE, Los Alamitos, CA, 1--6. DOI:http://dx.doi.org/10.1109/ICCCN.2009.5235299 Google ScholarGoogle ScholarCross RefCross Ref
  147. S. Zhang and L. Zhang. 2011. Water pollution monitoring system based on ZigBee wireless sensor network. In Proceedings of the International Conference on Electronics, Communications, and Control (ICECC’11). IEEE, Los Alamitos, CA, 1775--1779. DOI:http://dx.doi.org/10.1109/ICECC.2011.6067965 Google ScholarGoogle ScholarCross RefCross Ref
  148. B. Zhou, W. Dehua, L. Pan, L. Bo, and G. Zeng. 2012a. Water quality automatic monitoring system based on GPRS data communications. In Proceedings of the Conference on Modern Hydraulic Engineering. 840--843. DOI:http://dx.doi.org/10.1016/j.proeng.2012.01.820Google ScholarGoogle Scholar
  149. Y. Zhou, D. Wen, F. Yuan, J. Li, and M. Li. 2012b. Research of online water quality monitoring system based on ZigBee network. Advances in Information Sciences and Service Sciences 4, 5, 255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. X. Zhu, D. Li, D. He, J. Wang, D. Ma, and F. Li. 2010. A remote wireless system for water quality online monitoring in intensive fish culture. Computers and Electronics in Agriculture 71, S3--S9.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Water Quality Monitoring Using Wireless Sensor Networks: Current Trends and Future Research Directions

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Sensor Networks
          ACM Transactions on Sensor Networks  Volume 13, Issue 1
          February 2017
          242 pages
          ISSN:1550-4859
          EISSN:1550-4867
          DOI:10.1145/3027492
          • Editor:
          • Chenyang Lu
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 28 January 2017
          • Accepted: 1 October 2016
          • Revised: 1 August 2016
          • Received: 1 February 2016
          Published in tosn Volume 13, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader