skip to main content
10.1145/3041021.3055135acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

The Paradigm-Shift of Social Spambots: Evidence, Theories, and Tools for the Arms Race

Published:03 April 2017Publication History

ABSTRACT

Recent studies in social media spam and automation provide anecdotal argumentation of the rise of a new generation of spambots, so-called social spambots. Here, for the first time, we extensively study this novel phenomenon on Twitter and we provide quantitative evidence that a paradigm-shift exists in spambot design. First, we measure current Twitter's capabilities of detecting the new social spambots. Later, we assess the human performance in discriminating between genuine accounts, social spambots, and traditional spambots. Then, we benchmark several state-of-the-art techniques proposed by the academic literature. Results show that neither Twitter, nor humans, nor cutting-edge applications are currently capable of accurately detecting the new social spambots. Our results call for new approaches capable of turning the tide in the fight against this raising phenomenon. We conclude by reviewing the latest literature on spambots detection and we highlight an emerging common research trend based on the analysis of collective behaviors. Insights derived from both our extensive experimental campaign and survey shed light on the most promising directions of research and lay the foundations for the arms race against the novel social spambots. Finally, to foster research on this novel phenomenon, we make publicly available to the scientific community all the datasets used in this study.

References

  1. M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and C. Sohler. StreamKM : A clustering algorithm for data streams. Experimental Algorithmics, 17:2--4, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. F. Ahmed and M. Abulaish. A generic statistical approach for spam detection in online social networks. Computer Communications, 36(10):1120--1129, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Avvenuti, S. Bellomo, S. Cresci, M. N. La Polla, and M. Tesconi. Hybrid crowdsensing: A novel paradigm to combine the strengths of opportunistic and participatory crowdsensing. In WWW companion. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. Detecting spammers on Twitter. In CEAS, 2010.Google ScholarGoogle Scholar
  5. F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, and M. Gonçalves. Detecting spammers and content promoters in online video social networks. In SIGIR. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos. CopyCatch: stopping group attacks by spotting lockstep behavior in social networks. In WWW. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bot or not? http://truthy.indiana.edu/botornot/, 2014. Accessed: 2016-10-24.Google ScholarGoogle Scholar
  8. F. Cao, M. Ester, W. Qian, and A. Zhou. Density-Based Clustering over an Evolving Data Stream with Noise. In SDM. SIAM, 2006. Google ScholarGoogle ScholarCross RefCross Ref
  9. Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection of fake accounts in large scale social online services. In NSDI. USENIX, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Q. Cao, X. Yang, J. Yu, and C. Palow. Uncovering large groups of active malicious accounts in online social networks. In CCS. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks. Physical review E, 70(6):066111, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi. A Criticism to Society (as seen by Twitter analytics). In DASec. IEEE, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi. Fame for sale: Efficient detection of fake Twitter followers. Decision Support Systems, 80:56--71, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi. DNA-inspired online behavioral modeling and its application to spambot detection. IEEE Intelligent Systems, 5(31):58--64, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  15. C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer. BotOrNot: A system to evaluate social bots. In WWW companion. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini. The rise of social bots. Commun. ACM, 59(7):96--104, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. N. Choudhary. Towards online spam filtering in social networks. In NDSS. Internet Society, 2012.Google ScholarGoogle Scholar
  18. S. Ghosh, B. Viswanath, F. Kooti, N. K. Sharma, G. Korlam, F. Benevenuto, N. Ganguly, and K. P. Gummadi. Understanding and combating link farming in the Twitter social network. In WWW. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Giatsoglou, D. Chatzakou, N. Shah, A. Beutel, C. Faloutsos, and A. Vakali. ND-Sync: Detecting synchronized fraud activities. In PAKDD, pages 201--214. Springer, 2015.Google ScholarGoogle Scholar
  20. K. L. Gwet. Handbook of inter-rater reliability: The definitive guide to measuring the extent of agreement among raters. Advanced Analytics, LLC, 2014.Google ScholarGoogle Scholar
  21. X. Hu, J. Tang, and H. Liu. Online social spammer detection. In Artificial Intelligence. AAAI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang. Inferring lockstep behavior from connectivity pattern in large graphs. Knowledge and Information Systems, pages 1--30, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang. Catching synchronized behaviors in large networks: A graph mining approach. ACM Trans. Knowl. Discov. Data, 10(4):35:1--35:27, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Jiang, P. Cui, and C. Faloutsos. Suspicious behavior detection: Current trends and future directions. IEEE Intelligent Systems, 31(1):31--39, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Lee, J. Caverlee, and S. Webb. Uncovering social spammers: social honeypots machine learning. In SIGIR. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. K. Lee, B. D. Eoff, and J. Caverlee. Seven months with the devils: A long-term study of content polluters on Twitter. In ICWSM. AAAI, 2011.Google ScholarGoogle Scholar
  27. S. Lee and J. Kim. WarningBird: A near real-time detection system for suspicious URLs in Twitter stream. IEEE Trans. Depend. Sec. Comput., 10(3):183--195, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Lee and J. Kim. Early filtering of ephemeral malicious accounts on Twitter. Computer Communications, 54:48--57, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Liu, J. Han, and H. Motoda. Uncovering deception in social media. Social Network Analysis and Mining, 4(1):1--2, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  30. Y. Liu, B. Wu, B. Wang, and G. Li. SDHM: A hybrid model for spammer detection in Weibo. In ASONAM. IEEE/ACM, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  31. Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang. Twitter spammer detection using data stream clustering. Information Sciences, 260:64--73, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Paradise, R. Puzis, and A. Shabtai. Anti- reconnaissance tools: Detecting targeted socialbots. IEEE Internet Computing, 18(5):11--19, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  33. T. Stein, E. Chen, and K. Mangla. Facebook immune system. In SNS. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. G. Stringhini, M. Egele, C. Kruegel, and G. Vigna. Poultry markets: on the underground economy of Twitter followers. In WOSN. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. G. Stringhini, C. Kruegel, and G. Vigna. Detecting spammers on social networks. In ACSAC. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng, and B. Y. Zhao. Follow the green: growth and dynamics in Twitter follower markets. In IMC. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-time URL spam filtering service. In S&P. IEEE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson. Trafficking fraudulent accounts: The role of the underground market in Twitter spam and abuse. In Security Symposium. USENIX, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. M. Van Dongen. Graph clustering via a discrete uncoupling process. SIAM Journal on Matrix Analysis and Applications, 30(1):121--141, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. B. Viswanath, M. A. Bashir, M. B. Zafar, S. Bouget, S. Guha, K. P. Gummadi, A. Kate, and A. Mislove. Strength in numbers: Robust tamper detection in crowd computations. In COSN. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An analysis of social network-based sybil defenses. Computer Communication Review, 41(4):363--374, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng, and B. Y. Zhao. Social Turing tests: Crowdsourcing sybil detection. In NDSS. Internet Society, 2013.Google ScholarGoogle Scholar
  43. Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, K. Vitaldevaria, J. Walter, J. Huang, and Z. M. Mao. Innocent by association: early recognition of legitimate users. In CCS. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. C. Yang, R. Harkreader, and G. Gu. Empirical evaluation and new design for fighting evolving Twitter spammers. IEEE Trans. Inform. Forens. Sec., 8(8):1280--1293, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai. Uncovering social network sybils in the wild. ACM Trans. Knowl. Discov. Data, 8(1):2, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. S. Yardi, D. Romero, G. Schoenebeck, et al. Detecting spam in a twitter network. First Monday, 15(1), 2009. Google ScholarGoogle ScholarCross RefCross Ref
  47. R. Yu, X. He, and Y. Liu. GLAD: Group anomaly detection in social media analysis. ACM Trans. Know. Discov. Data, 10(2):1--22, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. J. Zhang, R. Zhang, Y. Zhang, and G. Yan. The rise of social botnets: Attacks and countermeasures. arXiv preprint arXiv:1603.02714, 2016.Google ScholarGoogle Scholar

Index Terms

  1. The Paradigm-Shift of Social Spambots: Evidence, Theories, and Tools for the Arms Race

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          WWW '17 Companion: Proceedings of the 26th International Conference on World Wide Web Companion
          April 2017
          1738 pages
          ISBN:9781450349147

          Publisher

          International World Wide Web Conferences Steering Committee

          Republic and Canton of Geneva, Switzerland

          Publication History

          • Published: 3 April 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          WWW '17 Companion Paper Acceptance Rate164of966submissions,17%Overall Acceptance Rate1,899of8,196submissions,23%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader