skip to main content
research-article

Comparative Analysis of Three Different Modalities for Perception of Artifacts in Videos

Published:14 September 2017Publication History
Skip Abstract Section

Abstract

This study compares three popular modalities for analyzing perceived video quality; user ratings, eye tracking, and EEG. We contrast these three modalities for a given video sequence to determine if there is a gap between what humans consciously see and what we implicitly perceive. Participants are shown a video sequence with different artifacts appearing at specific distances in their field of vision; near foveal, middle peripheral, and far peripheral. Our results show distinct differences between what we saccade to (eye tracking), how we consciously rate video quality, and our neural responses (EEG data). Our findings indicate that the measurement of perceived quality depends on the specific modality used.

Skip Supplemental Material Section

Supplemental Material

References

  1. Laura Acqualagna, Sebastian Bosse, Anne K. Porbadnigk, Gabriel Curio, Klaus-Robert Müller, Thomas Wiegand, and Benjamin Blankertz. 2015. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs). J. Neural Eng. 12, 2 (2015), 026012.Google ScholarGoogle ScholarCross RefCross Ref
  2. Elena Arabadzhiyska, Okan Tarhan Tursun, Karol Myszkowski, Hans-Peter Seidel, and Piotr Didyk. 2017. Saccade landing position prediction for gaze-contingent rendering. ACM Trans. 36, 4 (July 2017), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sebastian Arndt, Jan-Niklas Antons, Robert Schleicher, Sebastian Möller, and Gabriel Curio. 2012. Perception of low-quality videos analyzed by means of electroencephalography. In Proceedings of the 2012 4th International Workshop on Quality of Multimedia Experience (QoMEX’12). IEEE, 284--289.Google ScholarGoogle ScholarCross RefCross Ref
  4. Sebastian Arndt, Jan-Niklas Antons, Robert Schleicher, Sebastian Moller, and Gabriel Curio. 2014. Using electroencephalography to measure perceived video quality. IEEE J. Select. Topics. Signal Process. 8, 3 (2014), 366--376.Google ScholarGoogle ScholarCross RefCross Ref
  5. Sebastian Arndt, Jan-Niklas Antons, Robert Schleicher, Sebastian Möller, Simon Scholler, and Gabriel Curio. 2011. A physiological approach to determine video quality. In Proceedings of the 2011 IEEE International Symposium on Multimedia (ISM’11). IEEE, 518--523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Sebastian Bosse, Laura Acqualagna, Anne K. Porbadnigk, Benjamin Blankertz, Gabriel Curio, Klaus-Robert Müller, and Thomas Wiegand. 2014. Neurally informed assessment of perceived natural texture image quality. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP’14). IEEE, 1987--1991.Google ScholarGoogle ScholarCross RefCross Ref
  7. Connie C. Duncan, Robert J. Barry, John F. Connolly, Catherine Fischer, Patricia T. Michie, Risto Näätänen, John Polich, Ivar Reinvang, and Cyma Van Petten. 2009. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 120, 11 (2009), 1883--1908.Google ScholarGoogle ScholarCross RefCross Ref
  8. Ulrich Engelke, Daniel P. Darcy, Grant H. Mulliken, Sebastian Bosse, Maria G. Martini, Sebastian Arndt, Jan-Niklas Antons, Kit Yan Chan, Naeem Ramzan, and Kjell Brunnström. 2017. Psychophysiology-based QoE assessment: A survey. IEEE J. Select. Topics Signal Process. 11, 1 (2017), 6--21.Google ScholarGoogle ScholarCross RefCross Ref
  9. E. J. Engelken, K. W. Stevens, and J. D. Enderle. 1991. Relationships between manual reaction time and saccade latency in response to visual and auditory stimuli. Aviat. Space Environ. Med. 62, 4 (1991), 315--318.Google ScholarGoogle Scholar
  10. Stephen Gould, Joakim Arfvidsson, Adrian Kaehler, Benjamin Sapp, Marius Messner, Gary R. Bradski, Paul Baumstarck, Sukwon Chung, Andrew Y. Ng et al. 2007. Peripheral-foveal vision for real-time object recognition and tracking in video. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’07), Vol. 7. 2115--2121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Stephen R. Gulliver and George Ghinea. 2004. Stars in their eyes: What eye-tracking reveals about multimedia perceptual quality. IEEE Trans. Syst. Man Cybernet.—Part A: Syst. Humans 34, 4 (2004), 472--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. A. Horridge. 1987. The evolution of visual processing and the construction of seeing systems. Proc. Roy. Soc. London B: Biol. Sci. 230, 1260 (1987), 279--292.Google ScholarGoogle Scholar
  13. Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. 2016. Measurement of quality of experience of video-on-demand services: A survey. IEEE Commun. Surveys Tutor. 18, 1 (2016), 401--418.Google ScholarGoogle ScholarCross RefCross Ref
  14. Bonkon Koo and Seungjin Choi. 2015. SSVEP response on oculus rift. In Proceedings of the 2015 3rd International Winter Conference on Brain-Computer Interface (BCI’15). IEEE, 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  15. Robert Kosara, Christopher G. Healey, Victoria Interrante, David H. Laidlaw, and Colin Ware. 2003. Thoughts on user studies: Why, how, and when. IEEE Comput. Graph. Appl. 23, 4 (2003), 20--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Vassilios Krassanakis, Vassiliki Filippakopoulou, and Byron Nakos. 2014. EyeMMV toolbox: An eye movement post-analysis tool based on a two-step spatial dispersion threshold for fixation identification. J. Eye Move. Res. 7, 1 (2014).Google ScholarGoogle Scholar
  17. Eleni Kroupi, Philippe Hanhart, Jong-Seok Lee, Martin Rerabek, and Touradj Ebrahimi. 2014. EEG correlates during video quality perception. In Proceedings of the 22nd European Signal Processing Conference (EUSIPCO’14). IEEE, 2135--2139.Google ScholarGoogle Scholar
  18. Olivier Le Meur, Alexandre Ninassi, Patrick Le Callet, and Dominique Barba. 2010. Overt visual attention for free-viewing and quality assessment tasks: Impact of the regions of interest on a video quality metric. Signal Process.: Image Commun. 25, 7 (2010), 547--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Zhicheng Li, Shiyin Qin, and Laurent Itti. 2011. Visual attention guided bit allocation in video compression. Image Vision Comput. 29, 1 (2011), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lea Lindemann and Marcus Magnor. 2011. Assessing the quality of compressed images using EEG. In Proceedings of the 18th IEEE International Symposium on Image Processing (ICIP’11). IEEE, 3109--3112.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lea Lindemann, Stephan Wenger, and Marcus Magnor. 2011. Evaluation of video artifact perception using event-related potentials. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization. ACM, 53--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hantao Liu and Ingrid Heynderickx. 2011. Visual attention in objective image quality assessment: Based on eye-tracking data. IEEE Trans. Circ. Syst. Video Technol. 21, 7 (2011), 971--982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sidi Liu, Jinglei Lv, Yimin Hou, Ting Shoemaker, Qinglin Dong, Kaiming Li, and Tianming Liu. 2016. What makes a good movie trailer?: Interpretation from simultaneous EEG and eye-tracker recording. In Proceedings of the 2016 ACM on Multimedia Conference. ACM, 82--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Steven J. Luck. 2014. An Introduction to the Event-related Potential Technique. MIT Press.Google ScholarGoogle Scholar
  25. Arghir-Nicolae Moldovan, Ioana Ghergulescu, Stephan Weibelzahl, and Cristina Hava Muntean. 2013. User-centered EEG-based multimedia quality assessment. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB’13). IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  26. Maryam Mustafa, Stefan Guthe, and Marcus Magnor. 2012. Single-trial EEG classification of artifacts in videos. ACM Trans. Appl. Percept. (TAP) 9, 3 (2012), 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Paul L. Nunez and Ramesh Srinivasan. 2006. Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press.Google ScholarGoogle Scholar
  28. Terence W. Picton. 1992. The P300 wave of the human event-related potential.J. Clin. Neurophysiol. 9, 4 (1992), 456--479.Google ScholarGoogle ScholarCross RefCross Ref
  29. Nikolay Ponomarenko, Vladimir Lukin, Alexander Zelensky, Karen Egiazarian, Marco Carli, and Federica Battisti. 2009. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Modern Radioelectron. 10, 4 (2009), 30--45.Google ScholarGoogle Scholar
  30. D. G. E. Robertson, J. M. Barden, and James Dowling. 1993. Response characteristics of different butterworth low-pass digital filters. J. Biomech. 26, 3 (1993), 299--299.Google ScholarGoogle ScholarCross RefCross Ref
  31. David A. Robinson. 1968. The oculomotor control system: A review. Proc. IEEE 56, 6 (1968), 1032--1049.Google ScholarGoogle ScholarCross RefCross Ref
  32. Kalpana Seshadrinathan, Rajiv Soundararajan, Alan Conrad Bovik, and Lawrence K. Cormack. 2010. Study of subjective and objective quality assessment of video. IEEE Trans. Image Process. 19, 6 (2010), 1427--1441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Markus A. Wenzel, Jan-Eike Golenia, and Benjamin Blankertz. 2016. Classification of eye fixation related potentials for variable stimulus saliency. Frontiers in Neuroscience 10 (2016), 23.Google ScholarGoogle ScholarCross RefCross Ref
  34. Wei Zhang and Hantao Liu. 2017. Study of saliency in objective video quality assessment. IEEE Trans. Image Process. 26, 3 (2017), 1275--1288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yi Zhu, Ingrid Heynderickx, and Judith A. Redi. 2015. Understanding the role of social context and user factors in video quality of experience. Comput. Human Behav. 49 (2015), 412--426. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Comparative Analysis of Three Different Modalities for Perception of Artifacts in Videos

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 14, Issue 4
          Special Issue SAP 2017
          October 2017
          63 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/3140462
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 September 2017
          • Received: 1 July 2017
          • Accepted: 1 July 2017
          Published in tap Volume 14, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader