skip to main content

Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation

Published:01 June 1999Publication History
Skip Abstract Section

Abstract

Polynomial systems occur in a wide variety of application domains. Homotopy continuation methods are reliable and powerful methods to compute numerically approximations to all isolated complex solutions. During the last decade considerable progress has been accomplished on exploiting structure in a polynomial system, in particular its sparsity. In this article the structure and design of the software package PHC is described. The main program operates in several modes, is menu driven, and is file oriented. This package features great variety of root-counting methods among its tools. The outline of one black-box solver is sketched, and a report is given on its performance on a large database of test problems. The software has been developed on four different machine architectures. Its portability is ensured by the gnu-ada compiler.

Skip Supplemental Material Section

Supplemental Material

References

  1. ADA CORE TECHNOLOGIES. 1997. GNAT user's guide: The GNU Ada 95 compiler. Ada Core Technologies, New York, NY. Available at http://www.gnat.com.Google ScholarGoogle Scholar
  2. ALLISON, D. C. S., CHAKRABORTY, A., AND WATSON, L. T. 1989. Granularity issues for solving polynomial systems via globally convergent algorithms on a hypercube. J. Supercomput. 3, 5-20.Google ScholarGoogle ScholarCross RefCross Ref
  3. BACKELIN, J.-R. AND FR BERG, R. 1991. How we proved that there are exactly 924 cyclic 7-roots. In Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC '91, Bonn, Germany, July 15-17, 1991), S. M. Watt, Ed. ACM Press, New York, NY, 103-111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. BELLIDO, A. M. 1992. Construction of iteration functions for the simultaneous computation of the solutions of equations and algebraic systems. Num. Alg. 6, 3-4, 317-351.Google ScholarGoogle Scholar
  5. BERNSHTEIN, D. N. 1975. The number of roots of a system of equations. Func. Anal. Apps. 9, 3, 183-185.Google ScholarGoogle ScholarCross RefCross Ref
  6. BINI, D. AND MOURRAIN, B. 1998. Polynomial test suite, http://www-sop.inria.fr/saga/POL/.Google ScholarGoogle Scholar
  7. BJ RCK, a. AND FR BERG, R. 1991. A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n-roots. J. Symb. Comput. 12, 3 (Sept. 1991), 329-336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. BJ RCK, G. AND FR BERG, R. 1994. Methods to "divide out" certain solutions from systems of algebraic equations, applied to find all cyclic 8-roots. In Analysis, Algebra and Computers in Mathematical Research, M. Gyllenberg and L. Persson, Eds. Marcel Dekker, Inc. Series of Pure and Applied Mathematics, vol. 564. 57-70.Google ScholarGoogle Scholar
  9. BLUM, L., CUCKER, F., SHUB, M., AND SMALL, S. 1997. Complexity and Real Computation. Springer-Verlag, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. BOEGE, W., GEBAUER, R., AND KREDEL, H. 1986. Some examples for solving systems of algebraic equations by calculating Groebner bases. J. Symb. Comput. 2, 1 (Mar. 1986), 83-98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. BOON, S. 1992. Solving systems of equations. Sci. Math. Num-Analysis. Newsgroup Article 3529.Google ScholarGoogle Scholar
  12. CANNY, J. AND ROJAS, J. M. 1991. An optimal condition for determining the exact number of roots of a polynomial system. In Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC '91, Bonn, Germany, July 15-17, 1991), S. M. Watt, Ed. ACM Press, New York, NY, 96-102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. CHU, M. T., LI, T. Y., AND SAUER, T. 1988. Homotopy method for general A-matrix problems. SIAM J. Matrix Anal. Appl. 9, 4 (Oct. 1988), 528-536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. COHN, H. AND DEUTSCH, g. 1988. An explicit modular equation in two variables for Q{sqrt(3)}. Math. Comput. 50, 557-568.Google ScholarGoogle Scholar
  15. Cox, D., LITTLE, J., AND O'SHEA, D. 1998. Using Algebraic Geometry. Springer Graduate Texts in Mathematics, vol. 185. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  16. EMIRIS, I. Z. 1994. Sparse elimination and applications in kinematics. Ph.D. Dissertation. Computer Science Department, University of California at Berkeley, Berkeley, CA. Available at http://www.inria.fr/saga/emiris. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. EMIRIS, I. Z. 1997. A general solver based on sparse resultants: Numerical issues and kinematic applications. Rapport de recherche no. 3110. INRIA, Rennes, France. Available via anonymous ftp to ftp.inria.fr.Google ScholarGoogle Scholar
  18. EMIRIS, I. Z. 1998. Symbolic-numeric algebra for polynomials. In Encyclopedia of Computer Science and Technology, A. Kent and J. Williams, Eds. Encyclopedia of Computer Science, vol. 39. Marcel Dekker, Inc., New York, NY, 261-281.Google ScholarGoogle Scholar
  19. EMIRIS, I. Z. AND CANNY, J. F. 1995. Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comput. 20, 2 (Aug. 1995), 117-149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. EMIRIS, I. Z. AND VERSCHELDE, g. 1999. How to count efficiently all affine roots of a polynomial system. Discrete Appl. Math. 93, 1, 21-32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. GALLIGO, A. AND TRAVERSO, C. 1989. Practical determination of the dimension of an algebraic variety. In Proceedings of the 3rd Conference on Computers and Mathematics (Boston, MA, June 13-17, 1989), E. Kaltofen and S. M. Watt, Eds. Conferences in Computers and Mathematics Springer-Verlag, New York, NY, 46-52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. GAO, T., LI, T. Y., AND WANG, X. 1997. Finding isolated zeros of polynomial systems in Cn with stable mixed volumes. J. Symb. Comput. To be published. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. GATERMANN, K. 1990. Symbolic solution of polynomial equation systems with symmetry. In Symbolic and Algebraic Computation on Proceedings of the International Symposium (ISSAAC '90, Tokyo, Japan), S. Watanabe and M. Nagata, Eds. ACM Press, New York, NY, 112-119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. GEL'FAND, I. M., KAPRANOV, M. M., AND ZELEVINSKY, A.V. 1994. Discriminants, Resultants and Multidimensional Determinants. Birkh user Boston Inc., Cambridge, MA.Google ScholarGoogle Scholar
  26. GIORDANO, T. 1996. Impl mention distribu e du calcul du volume mixte. Master's Thesis. University of Nice, Sophia-Antipolis, France.Google ScholarGoogle Scholar
  27. HARIMOTO, S. AND WATSON, L.T. 1989. The granularity of homotopy algorithms for polynomial systems of equations. In Parallel Processing for Scientific Computing, G. Rodrique, Ed. SIAM, Philadelphia, PA, 115-120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. HUBER, B. 1995. Pelican manual. Availabe via http://www.mrsi.org/people/members/birk.Google ScholarGoogle Scholar
  29. HUBER, B. T. 1996. Solving sparse polynomial systems. Ph.D. Dissertation. Cornell University, Ithaca, NY. Available at http://www.msri.org/people/members/birk.Google ScholarGoogle Scholar
  30. HUBER, B. AND STURMFELS, B. 1995. A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 212 (Oct. 1995), 1541-1555. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. HUBER, B. AND STURMFELS, B. 1997. Bernstein's theorem in affine space. Discrete Comput. Geom. 17, 2, 137-141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. HUBER, B. AND VERSCHELDE, J. 1998. Polyhedral end games for polynomial continuation. Num. Alg. 18, 1, 91-108.Google ScholarGoogle ScholarCross RefCross Ref
  33. HUBER, B., SOTTILE, F., AND STURMFELS, B. 1998. Numerical Schubert calculus. J. Symb. Comput. 26, 6, 767-788. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. KHOVANSKII, A. 1991. Fewnomials. Translations of Mathematical Monographs, vol. 88. American Mathematical Society, Boston, MA.Google ScholarGoogle Scholar
  35. KLEIMAN, S. AND LAKSOV, D. 1972. Schubert calculus. Am. Math. Mon. 79, 10, 1061-1082.Google ScholarGoogle ScholarCross RefCross Ref
  36. KUSHNIRENKO, A. 1976. Newton Polytopes and the B zout Theorem. Func. Anal. Apps. 10, 3, 233-235.Google ScholarGoogle ScholarCross RefCross Ref
  37. LI, T.-Y. 1987. Solving polynomial systems. Math. Intell. 9, 3, 33-39.Google ScholarGoogle ScholarCross RefCross Ref
  38. LI, T.-Y. 1997. Numerical solutions of multivariate polynomial systems by homotopy continuation methods. Act. Numer. 6, 399-436.Google ScholarGoogle ScholarCross RefCross Ref
  39. LI, T.-Y. AND SAUER, T. 1987. Regularity results for solving systems of polynomials by homotopy method. Numer. Math. 50, 3, 283-289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. LI, T.-Y. AND WANG, X. 1991. Solving deficient polynomial systems with homotopies which keep the subschemes at infinity invariant. Math. Comput. 56, 194, 693-710.Google ScholarGoogle ScholarCross RefCross Ref
  41. LI, T.-Y. AND WANG, X. 1992. Nonlinear homotopies for solving deficient polynomial systems with parameters. SIAM J. Numer. Anal. 29, 4 (Aug. 1992), 1104-1118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. LI, T.-Y. AND WANG, X. 1996. The BKK root count in Cn. Math. Comput. 65, 216, 1477-1484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. LI, T.-Y., SAUER, T., AND YORKE, J. A. 1987a. Numerical solution of a class of deficient polynomial systems. SIAM J. Numer. Anal. 24, 2 (Apr. 1987), 435-451. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. LI, T.-Y., SAUER, T., AND YORKE, J.A. 1987b. The random product homotopy and deficient polynomial systems. Numer. Math. 51, 5, 481-500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. LI, T.-Y., SAUER, T., AND YORKE, g. A. 1989. The cheater's homotopy: An efficient procedure for solving systems of polynomial equations. SIAM J. Numer. Anal. 26, 5 (Oct. 1989), 1241-1251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. LI, T.-Y., WANG, T., AND WANG, X. 1996. Random product homotopy with minimal BKK bound. In The Mathematics of Numerical Analysis, J. Renegar, M. Shub, and S. Smale, Eds. Lectures in Applied Mathematics, vol. 32.Google ScholarGoogle Scholar
  47. MALAJOVICH, G. 1996. pss 2.beta, polynomial system solver. (Software). Available at http://www.labma.ufrj.br:80/gregorio.Google ScholarGoogle Scholar
  48. THE FRISCO CONSORTIUM. 1996. FRISCO--A framework for integrated symbolic/numeric computation. Available at http://www.nag.co.uk/projects/FRISCO.html.Google ScholarGoogle Scholar
  49. THE PISA TEAM OF PoSSo. 1993. PoSSo home page. http://janet.dm.unipi.it/.Google ScholarGoogle Scholar
  50. MEINTJES, K. AND MORGAN, A. P. 1990. Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 2 (June 1990), 143-151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. MOORE, R. E. AND JONES, S.T. 1977. Safe starting regions for iterative methods. SIAM J. Numer. Anal. 14, 6, 1051-1065.Google ScholarGoogle ScholarCross RefCross Ref
  52. MOR , J. J., GARBOW, B. S., AND HILLSTROM, K. E. 1981. Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 1 (Mar.), 17-41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. MORGAN, A. P. 1987. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems. Prentice-Hall, Inc., Upper Saddle River, NJ.Google ScholarGoogle Scholar
  54. MORGAN, A. AND SHAPIRO, V. 1987a. Box-bisection for solving second-degree systems and the problem of clustering. ACM Trans. Math. Softw. 13, 2, 152-167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. MORGAN, A. AND SOMMESE, A. 1987b. Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput. 24, 2 (Nov. 1987), 115-138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. MORGAN, A. AND SOMMESE, A. 1987c. A homotopy for solving general polynomial systems that respects m-homogenous structures. Appl. Math. Comput. 24, 2 (Nov. 1987), 101-113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. MORGAN, A. P. AND SOMMESE, A. J. 1989. Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29, 2 (Jan. 1989), 123-160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. MORGAN, A. P. AND WAMPLER, C.W. 1990. Solving a planar four-bar design problem using continuation. ASME J. Mech. Des. 112, 544-550.Google ScholarGoogle ScholarCross RefCross Ref
  59. MORGAN, A. P., SOMMESE, A. J., AND WAMPLER, C.W. 1991. Computing singular solutions to nonlinear analytic systems. Numer. Math. 58, 669-684.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. MORGAN, A. P., SOMMESE, A. J., AND WAMPLER, C.W. 1992a. Computing singular solutions to polynomial systems. Adv. Appl. Math. 13, 3 (Sept. 1992), 305-327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. MORGAN, A. P., SOMMESE, A. J., AND WAMPLER, C.W. 1992b. A power series method for computing singular solutions to nonlinear analytic systems. Numer. Math. 63, 391-409.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. MORGAN, A. P., SOMMESE, A. J., AND WAMPLER, C.W. 1995. A product-decomposition bound for Bezout numbers. SIAM J. Numer. Anal. 32, 4 (Aug. 1995), 1308-1325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. MORGAN, A. P., SOMMESE, A. J., AND WATSON, L. T. 1989. Finding all isolated solutions to polynomial systems using HOMPACK. ACM Trans. Math. Softw. 15, 2 (June 1989), 93-122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. MOURRAIN, B. 1993. The 40 "generic" positions of a parallel robot. In Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation (ISSAC '93, Kiev, Ukraine, July 6-8, 1993), M. Bronstein, Ed. ACM Press, New York, NY, 173-182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. MOURRAIN, B. 1996. The handbook of polynomial systems. Available via http://www.inria.fr/ saga/POL/index.html.Google ScholarGoogle Scholar
  66. NAUHEIM, R. 1998. Systems of algebraic equations with bad reduction. J. Symb. Comput. 25, 5, 619-641. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. NELSEN, C. V. AND HODGKIN, B. C. 1981. Determination of magnitudes, directions, and locations of two independent dipoles in a circular conducting region from boundary potential measurements. IEEE Trans. Bio. Eng. 28, 12, 817-823.Google ScholarGoogle ScholarCross RefCross Ref
  68. NOONBURG, V. W. 1989. A neural network modeled by an adaptive Lotka-Volterra system. SIAM J. Appl. Math. 49, 6 (Dec. 1989), 1779-1792. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. RAVI, M. S., ROSENTHAL, J., AND WANG, X. 1996. Dynamic pole placement assignment and Schubert calculus. SIAM J. Control Optim. 34, 3, 813-832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. ROJAS, J. M. 1994. A convex geometric approach to counting the roots of a polynomial system. Theor. Comput. Sci. 133, 1 (Oct. 10, 1994), 105-140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. ROJAS, J. M. 1997. Toric laminations, sparse generalized characteristic polynomials, and a refinement of Hilbert's tenth problem. In Selected papers of a conference on Foundations of computational mathematics (FoCM '97, Rio de Janeiro, Brazil, Jan. 1997), F. Cucker and M. Shub, Eds. Springer-Verlag, New York, NY, 369-381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. ROJAS, J. M. 1999. Toric intersection theory for affine root counting. J. Pure Applied Alg. 136, 1 (Mar.), 67-100.Google ScholarGoogle ScholarCross RefCross Ref
  73. ROJAS, J. M. AND WANG, X. 1996. Counting affine roots of polynomial systems via pointed Newton polytopes. J. Complexity 12, 2, 116-133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. ROSENTHAL, g. AND SOTTILE, F. 1998. Some remarks on real and complex output feedback. Syst. Control Lett. 33, 2, 73-80. See http://www.nd.edu/-rosen/pole for a description of computational aspects of the paper. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. ROSENTHAL, J. AND WILLEMS, J. C. 1998. Open problems in the area of pole placement. In Open Problems in Mathematical Systems and Control Theory, V. D. Blondel, E. D. Sontag, M. Vidyasagar, and J. C. Willems, Eds. Communication and Control Engineering Series. Springer-Verlag, New York, NY, 181-191.Google ScholarGoogle Scholar
  76. SCHRANS, S. AND TROOST, W. 1990. Generalized Virasoro constructions for SU(3). Nuc. Phy. B345, 2-3, 584-606.Google ScholarGoogle Scholar
  77. SOSONKINA, M., WATSON, L. T., AND STEWART, D. E. 1996. A note on the end game in homotopy zero curve tracking. ACM Trans. Math. Softw. 22, 3 (Sept.), 281-287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. SOTTILE, F. 1997. Enumerative geometry for real varieties. In Algebraic Geometry--Santa Cruz 1995: Part I of Proceedings of Symposia in Pure Mathematics, J. Koll r, R. Lazarsfeld, and D. R. Morrison, Eds. University of California at Santa Cruz, Santa Cruz, CA, 435-447.Google ScholarGoogle Scholar
  79. SOTTILE, F. 1998. Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and Shapiro. Tech. Rep. Preprint 1998-066. Mathematical Sciences Research Institute, Berkeley, CA. To appear in Experimental Mathematics.Google ScholarGoogle ScholarCross RefCross Ref
  80. STEENKAMP, M. C. 1982. Die numeriese oplos van stelsels polinoomvergelykings. Tech. Rep. Nasionale Navorsingsinstituut vir Wiskundige Wetenskappe, Pretoria.Google ScholarGoogle Scholar
  81. STROUD, A. H. AND SECREST, D. 1966. Gaussian Quadrature Formulas. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  82. STURMFELS, B. 1994. On the Newton polytope of the resultant. J. Algebraic Comb. 3, 2 (Apr. 1994), 207-236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. STURMFELS, B. 1998. Polynomial equations and convex polytopes. Am. Math. Mon. 105, 10, 907-922.Google ScholarGoogle ScholarCross RefCross Ref
  84. SWELDENS, W. 1994. The construction and application of wavelets in numerical analysis. Ph.D. Dissertation. Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium.Google ScholarGoogle Scholar
  85. SYIEK, D. 1995. C vs Ada: Arguing performance religion. SIGADA Ada Lett. XV, 6 (Nov./Dec. 1995), 67-69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. TRAVERSO, C. 1993. The PoSSo test suite examples. Available at http://www.inria.fr/saga/ POL/index.html.Google ScholarGoogle Scholar
  87. VAN HENTENRYCK, P., MCALLESTER, D., AND KAPUR, D. 1997. Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34, 2, 797-827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. VERSCHELDE, J. 1990. Oplossen van stelsels veeltermvergelijkingen met behulp van continueringsmethodes. Bachelor's Thesis. Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium.Google ScholarGoogle Scholar
  89. VERSCHELDE, J. 1995. PHC and MVC: Two programs for solving polynomial systems by homotopy continuation. In Proceedings of the PoSSo Workshop on Software (Paris, France, Mar. 1-4), J. Faug re, J. Marchand, and R. Rioboo, Eds. 165-175.Google ScholarGoogle Scholar
  90. VERSCHELDE, J. 1996. Homotopy continuation methods for solving polynomial systems. Ph.D. Dissertation. Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium.Google ScholarGoogle Scholar
  91. VERSCHELDE, J. 1998. Numerical evidence for a conjecture in real algebraic geometry. Preprint 1998-064. Mathematical Sciences Research Institute, Berkeley, CA. To appear in Experimental Mathematics.Google ScholarGoogle Scholar
  92. VERSCHELDE, J. AND COOLS, R. 1992. Nonlinear reduction for solving deficient polynomial systems by continuation methods. Numer. Math. 63, 2, 263-282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. VERSCHELDE, J. AND COOLS, R. 1993a. An Ada workbench for homotopy continuation for solving polynomial systems. Ada Belg. Newslett. 2, 1, 23-40.Google ScholarGoogle Scholar
  94. VERSCHELDE, J. AND COOLS, R. 1993b. Symbolic homotopy construction. Appl. Alg. Eng. Commun. Comput. 4, 169-183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. VERSCHELDE, J. AND COOLS, R. 1994. Symmetric homotopy construction. J. Comput. Appl. Math. 50, 1-3 (May 20, 1994), 575-592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. VERSCHELDE, J. AND COOLS, R. 1996. Polynomial homotopy continuation, a portable Ada software package. Ada Belg. Newslett. 4, 59-83.Google ScholarGoogle Scholar
  97. VERSCHELDE, J. AND GATERMANN, K. 1995. Symmetric Newton polytopes for solving sparse polynomial systems. Adv. Appl. Math. 16, 1 (Mar. 1995), 95-127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. VERSCHELDE, J. AND HAEGEMANS, A. 1993. The GBQ-algorithm for constructing start systems of homotopies for polynomial systems. SIAM J. Numer. Anal. 30, 2 (Apr. 1993), 583-594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. VERSCHELDE, g., BECKERS, M., AND HAEGEMANS, A. 1991. A new start system for solving deficient polynomial systems using continuation. Appl. Math. Comput. 44, 3 (Aug. 1991), 225-239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. VERSCHELDE, J., GATERMANN, K., AND COOLS, R. 1996. Mixed-volume computation by dynamic lifting applied to polynomial system solving. Discrete Comput. Geom. 16, 1, 69-112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. VERSCHELDE, J., VERLINDEN, P., AND COOLS, R. 1994. Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31, 3 (June 1994), 915-930. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. WALLACK, A., EMIRIS, I. Z., AND MANOCHA, D. 1998. MARS: a MAPLE/MATLAB/C resultantbased solver. In Proceedings of the 1998 international symposium on Symbolic and algebraic computation (ISSAC '98, Rostock, Germany, Aug. 13-15, 1998), V. Weispfenning and B. Trager, Eds. ACM Press, New York, NY, 244-251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. WAMPLER, C.W. 1992. Bezout number calculations for multi-homogeneous polynomial systems. Appl. Math. Comput. 51, 2-3, 143-157.Google ScholarGoogle Scholar
  104. WAMPLER, C.W. 1996. Isotropic coordinates, circularity and Bezout numbers: Planar kinematics from a new perspective. In Proceedings of the 1996 ASME Design Engineering Technical Conference (Irvine, CA, Aug. 18-22). ASME, New York, NY. Also available as GM Tech. Rep. R&D-8188.Google ScholarGoogle Scholar
  105. WAMPLER, C. AND MORGAN, A. 1991. Solving the 6R inverse position problem using a generic-case solution methodology. Mech. Mach. Theory 26, 1, 91-106.Google ScholarGoogle ScholarCross RefCross Ref
  106. WATSON, L. T 1986. Numerical linear algebra aspects of globally convergent homotopy methods. SIAM Rev. 28, 4 (Dec. 1986), 529-545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. WATSON, L. T., BILLUPS, S. C., AND MORGAN, A. P. 1987. ALGORITHM 652: HOMPACK: A suite of codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. 13, 3 (Sept. 1987), 281-310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. WATSON, L. T., SOSONKINA, M., MELVILLE, R. C., MORGAN, A. P., AND WALKER, H. F. 1997. HOMPACK90: A suite of Fortran 90 codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. 23, 4, 514-549. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. WISE, S., SOMMESE, A., AND WATSON, L. 1998. POLSYS PLP: A partitioned linear product homotopy code for solving polynomial systems of equations.Google ScholarGoogle Scholar
  110. WRIGHT, A. H. 1985. Finding all solutions to a system of polynomial equations. Math. Comput. 44 (Jan. 1985), 125-133.Google ScholarGoogle Scholar

Index Terms

  1. Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader