skip to main content
research-article
Public Access

The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation

Published:24 August 2018Publication History
Skip Abstract Section

Abstract

Twitter has emerged as a major social media platform and generated great interest from sentiment analysis researchers. Despite this attention, state-of-the-art Twitter sentiment analysis approaches perform relatively poorly with reported classification accuracies often below 70%, adversely impacting applications of the derived sentiment information. In this research, we investigate the unique challenges presented by Twitter sentiment analysis and review the literature to determine how the devised approaches have addressed these challenges. To assess the state-of-the-art in Twitter sentiment analysis, we conduct a benchmark evaluation of 28 top academic and commercial systems in tweet sentiment classification across five distinctive data sets. We perform an error analysis to uncover the causes of commonly occurring classification errors. To further the evaluation, we apply select systems in an event detection case study. Finally, we summarize the key trends and takeaways from the review and benchmark evaluation and provide suggestions to guide the design of the next generation of approaches.

References

  1. A. Abbasi. 2010. Intelligent feature selection for opinion classification. IEEE Intell. Syst. 25, 4 (2010), 75--79.Google ScholarGoogle Scholar
  2. A. Abbasi and D. Adjeroh. 2014. Social media analytics for smart health. IEEE Intell. Syst. 29, 2 (2014), 60--80.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Abbasi and H. Chen. 2008. CyberGate: A design framework and system for text analysis of computer-mediated-communication. MIS Quart. 32, 4 (2008), 811--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Abbasi, H. Chen, and A. Salem. 2008. Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums. ACM Trans. Info. Syst. 26, 3 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Abbasi, S. France, Z. Zhang, and H. Chen. 2011. Selecting attributes for sentiment classification using feature relation networks. IEEE Trans. Knowl. Data Eng. 23, 3 (2011), 447--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Abbasi, T. Fu, D. Zeng, and D. Adjeroh. 2013. Crawling credible online medical sentiments for social intelligence. In Proceedings of the ASE/IEEE International Conference on Social Computing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Abbasi, Y. Zhou, S. Deng, and P. Zhang. 2018. Text analytics to support sense-making in social media: A language-action perspective. MIS Quart. 42, 2 (2018), 427--464.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Adjeroh, R. Beal, A. Abbasi, W. Zheng, M. Abate, and A. Ross. 2014. Signal fusion for social media analysis of adverse drug events. IEEE Intell. Syst. 29, 2 (2014), 74--80.Google ScholarGoogle Scholar
  9. C. Adrover, T. Bodnar, and M. Salathe. 2014. Targeting HIV-related medication side effects and sentiment using Twitter data. arXiv Preprint arXiv:1404.3610.Google ScholarGoogle Scholar
  10. A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau. 2011. Sentiment analysis of Twitter data. In Proceedings of the ACL Human Language Technologies Conference (HLT’11). 30--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. AiApplied. 2015. AiApplied System. Retrieved from www.ai-applied.nl.Google ScholarGoogle Scholar
  12. Alexa.com. 2015. Website traffic ranking. Retrieved from www.alexa.com.Google ScholarGoogle Scholar
  13. G. Amati, M. Bianchi, and G. Marcone. 2014. Sentiment estimation on Twitter. In Proceedings of the 5th Italian Information Retrieval Workshop (IIR'14). 39--50.Google ScholarGoogle Scholar
  14. N. Aston, J. Liddle, and W. Hu. 2014. Twitter sentiment in data streams with perceptron. J. Comput. Commun. 2, 3 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Bakliwal, J. Foster, J. van der Puil, R. O'Brien, L. Tounsi, and M. Hughes. 2013. Sentiment analysis of political tweets: Toward an accurate classifier. In Proceedings of the ACL Workshop on Language in Social Media. 49--58.Google ScholarGoogle Scholar
  16. L. Barbosa and J. Feng. 2010. Robust sentiment detection on Twitter from biased and noisy data. In Proceedings of the International Conference on Computational Linguistics. 36--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Bermingham and A. Smeaton. 2010. Classifying sentiment in microblogs: Is brevity an advantage? Proceedings of the ACM Conference on Information and Knowledge Management (CIKM’10). 1833--1836. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Bhuta, A. Doshi, U. Doshi, and M. Narvekar. 2014. A review of techniques for sentiment analysis of Twitter data. In Proceedings of the International Conference on Issues and Challenges in Intelligent Computing Techniques.Google ScholarGoogle Scholar
  19. A. Bifet and E. Frank. 2010. Sentiment knowledge discovery in Twitter streaming data. In Proceedings of the International Conference on Discovery Science 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Bollen, H. Mao, and X. Zeng. 2011. Twitter mood predicts the stock market. J. Comput. Sci. 2, 1 (2011), 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  21. F. Bravo-Marquez, M. Mendoza, B. Poblete. 2013. Combining strengths, emotions and polarities for boosting Twitter sentiment analysis. In Proceedings of the International Workshop on Issues of Sentiment Discovery and Opinion Mining. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Callison-Burch and M. Dredze. 2010. Creating speech and language data with amazon's mechanical turk. In Proceedings of the NAACL Human Language Technology Workshop (HLT’10). 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. ChatterBox. 2015. ChatterBox System. Retrieved from www. chatterbox.co.Google ScholarGoogle Scholar
  24. J. Chung and E. Mustafaraj. 2011. Can collective sentiment expressed on Twitter predict political elections? In Proceedings of the AAAI Conference on Artificial Intelligence. 1770--1771. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. S. Clark, J. K. Staton, E. Agchtein, and Y. Wang. 2014. Revealed public opinion on Twitter: The supreme court of the united states same-sex marriage decisions. Emory University Working Paper.Google ScholarGoogle Scholar
  26. A. Cui, M. Zhang, Y. Liu, and S. Ma. 2011. Emotion tokens: Bridging the gap among multilingual Twitter sentiment analysis. In Asia Information Retrieval Symposium. 238--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Das and M. Chen. 2007. Yahoo! for Amazon: Sentiment extraction from small talk on the web. Manage. Sci. 53, 9 (2007), 1375--1388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. K. Dave, S. Lawrence, and D. Pennock. 2003. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of the World Wide Web Conference (WWW’03). 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Davidov, O. Tsur, and A. Rappoport, 2010. Enhanced sentiment learning using Twitter hashtags and smileys. In Proceedings of the COLING Conference. 241--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. N. A. Diakopoulos and D. A. Shamma. 2010. Characterizing debate performance via aggregated Twitter sentiment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1195--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, 2014. Adaptive recursive neural network for target-dependent Twitter sentiment classification. In Proceedings of the ACL Conference. 49--54.Google ScholarGoogle Scholar
  32. A. DuVander. 2012. Which APIs are handling billions of requests per day? Programmable Web, 2012.Google ScholarGoogle Scholar
  33. J. Fernández, Y. Gutiérrez, J. M. Gómez, and P. Martinez-Barco. 2014. GPLSI: Supervised sentiment analysis in Twitter using skipgrams. In Proceedings of the ACL Workshop on Semantic Evaluation. 294--299.Google ScholarGoogle Scholar
  34. C. Forman, A. Ghose, and B. Wiesenfeld. 2008. Examining the relationships between reviews and sales: The role of reviewer identity disclosure in electronic markets. Info. Syst. Res. 19, 3 (2008).Google ScholarGoogle Scholar
  35. M. Gamon. 2004. Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis. In Proceedings of the Conference on Computational Linguistics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. Gayo-Avello. 2013. A meta-analysis of state-of-the-art electoral prediction from Twitter data. Soc. Sci. Comput. Rev. 31, 6 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Ghiassi, J. Skinner, and D. Zimbra, 2013. Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40, 16 (2013), 6266--6282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Ghiassi, D. Zimbra, and S. Lee. 2016. Targeted Twitter sentiment analysis for brands using supervised feature engineering and the dynamic architecture for artificial neural networks. J. Manage. Info. Syst. 33, 4 (2016), 1034--1058.Google ScholarGoogle ScholarCross RefCross Ref
  39. A. Giachanou and F. Crestani. 2016. Like it or not: A survey of Twitter sentiment analysis methods. ACM Comput. Surveys 49, 2 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. B. Gleason. 2013. #Occupy wall street: Exploring informal learning about a social movement on Twitter. Amer. Behav. Sci. 57, 7 (2013).Google ScholarGoogle Scholar
  41. A. Go, R. Bhayani, and L. Huang. 2009. Twitter sentiment classification using distant supervision. Stanford Digital Library Technologies Project Technical Report.Google ScholarGoogle Scholar
  42. P. Gonçalves, M. Araújo, F. Benevenuto, and M. Cha. 2013. Comparing and combining sentiment analysis methods. In Proceedings of the ACM Conference on Online Social Networks. 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Gunther and L. Furrer. 2013. GU-MLT-LT: Sentiment analysis of short messages using linguistic features and stochastic gradient descent. In Proceedings of the the International Workshop on Semantic Evaluation. 328--332.Google ScholarGoogle Scholar
  44. M. Hagan, M. Potthast, M. Buchner, and B. Stein. 2015. Webis: An ensemble for Twitter sentiment detection. In Proceedings of the the 9th International Workshop on Semantic Evaluation. 582--589.Google ScholarGoogle Scholar
  45. M. A. K. Halliday. 2004. An Introduction to Functional Grammar (3rd ed.), Hodder Arnold, London.Google ScholarGoogle Scholar
  46. A. Hassan, A. Abbasi, and D. Zeng. 2013. Twitter sentiment analysis: A bootstrap ensemble framework. In Proceedings of the ASE/IEEE International Conference on Social Computing. 357--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. W. Hu. 2013. Real-time Twitter sentiment toward thanksgiving and Christmas holidays. Soc. Network. 2 (2013), 77--86.Google ScholarGoogle ScholarCross RefCross Ref
  48. Y. Hu, F. Wang, and S. Kambhampati. 2013. Listening to the crowd: Automated analysis of events via aggregated Twitter sentiment. In Proceedings of the Conference on Artificial Intelligence. 2640--2646. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. X. Hu, J. Tang, H. Gao, and H. Liu. 2013. Unsupervised sentiment analysis with emotional signals. In Proceedings of the World Wide Web Conference (WWW’13). 607--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. S. Huang, W. Peng, J. Li, and D. Lee. 2013. Sentiment and topic analysis on social media: A multi-task multi-label classification approach. In Proceedings of the ACM WebSci Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Intridea. 2015. Intridea System. Retrieved from www. intridea.com.Google ScholarGoogle Scholar
  52. B. Jansen, M. Zhang, K. Sobel, and A. Chowdury. 2009. Twitter power: Tweets as electronic word of mouth. J. Amer. Soc. Info. Sci. Tech. 60, 11 (2009), 2169-2188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. X. Ji, S. A. Chun, and J. Geller. 2013. Monitoring public health concerns using Twitter sentiment classifications. In Proceedings of the Healthcare Informatics Conference. 335--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao. 2011. Target-dependent Twitter sentiment classification. In Proceedings of the ACL Conference. 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. F. Jiang, Y. Liu, H. Luan, M. Zhang, and S. Ma. 2014. Microblog sentiment analysis with emoticon space model. Social Media Processing. Springer, 76--87.Google ScholarGoogle Scholar
  56. F. Jungermann. 2009. Information extraction with rapidminer. In Proceedings of the German Society for Computational Linguistics Conference. 50--61.Google ScholarGoogle Scholar
  57. Y. Kaewpitakkun, K. Shirai, and M. Mohd. 2014. Sentiment lexicon interpolation and polarity estimation of objective and out-of-vocabulary words to improve sentiment classification on microblogging. In Proceedings of the Pacific Asia Conference on Language, Information, and Computation, 204--213.Google ScholarGoogle Scholar
  58. F. H. Khan, S. Bashir, and U. Qamar. 2014. TOM: Twitter opinion mining framework using hybrid classification scheme. Decis. Support Syst. 57 (2014), 245--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. S. Kim and E. Hovy. 2004. Determining the sentiment of opinions. In Proceedings of the International Conference on Computational Linguistics. 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. D. Kim and J. W. Kim. 2014. Public opinion mining on social media: A case study of Twitter opinion on nuclear power. In Proceedings of the International Conference on Circuits, Control, Communication, Electricity, Electronics, Energy, System, Signal and Simulation (CES-CUBE’14).Google ScholarGoogle Scholar
  61. E. Kontopoulos, C. Berberidis, T. Dergiades, and N. Bassiliades. 2013. Ontology-based sentiment analysis of Twitter posts. Expert Syst. Appl. 40, 10 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. E. Kouloumpis, T. Wilson, and J. Moore. 2011. Twitter sentiment analysis: The good the bad and the OMG! In Proceedings of the AAAI Conference on Weblogs and Social Media. 538--541.Google ScholarGoogle Scholar
  63. Y. Liu. 2006. Word of mouth for movies: Its dynamics and impact on box office revenue. J. Market. 70 (2006), 74--89.Google ScholarGoogle ScholarCross RefCross Ref
  64. K. Liu, W. Li, and M. Guo. 2012. Emoticon smoothed language models for Twitter sentiment analysis. In Proceedings of the AAAI Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. S. Liu, X. Cheng, and F. Li. 2015. TASC: Topic-adaptive sentiment classification on dynamic tweets. IEEE Trans. Knowl. Data Eng. 27, 6 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Lymbix. 2015. Lymbix System. Retrieved from www.lymbix.com.Google ScholarGoogle Scholar
  67. E. Marinez-Camara, M. Martin-Valdivia, L. Urena-Lopez, and A. Montejo-Raez. 2012. Sentiment analysis in Twitter. Natural Lang. Eng. 20, 1 (2012).Google ScholarGoogle Scholar
  68. J. R. Martin and P. R. White. 2005. The language of evaluation: Appraisal in English. Palgrave: London and New York.Google ScholarGoogle Scholar
  69. E. Mayfield and C. P. Rosé. 2012. LightSIDE: Open source machine learning for text accessible to non-experts. Handbook of Automated Essay Grading. Routledge: New York.Google ScholarGoogle Scholar
  70. Y. Mejova, P. Srinivasan, and B. Boynton. 2013. GOP primary season on Twitter: Popular political sentiment in social media. In Proceedings of the ACM Web Search and Data Mining Conference (WSDM’13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. A. Mittal and A. Goel. 2012. Stock prediction using Twitter sentiment analysis. Stanford University Working Paper.Google ScholarGoogle Scholar
  72. Y. Miura, S. Sakaki, K. Hattori, and T. Ohkuma. 2014. TeamX: A sentiment analyzer with enhanced lexicon mapping and weighting scheme for unbalanced data. In Proceedings of the the 8th International Workshop on Semantic Evaluation. 628--632.Google ScholarGoogle Scholar
  73. MLAnalyzer. 2015. MLAnalyzer System. Retrieved from www.mashape.com/mlanalyzer.Google ScholarGoogle Scholar
  74. S. M. Mohammad, S. Kiritchenko, and X. Zhu, X. 2013. NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. In Proceedings of the the 7th International Workshop on Semantic Evaluation. 321--327.Google ScholarGoogle Scholar
  75. A. Montejo-Ráez, E. Martínez-Cámara, M. T. Martín-Valdivia, and L. A. Ureña-López. 2014. Ranked wordnet graph for sentiment polarity classification in Twitter. Comput. Speech Lang. 28, 1 (2014), 93--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. F. Nielsen. 2011. A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In Proceedings of the ESWC Workshop on Making Sense of Microposts.Google ScholarGoogle Scholar
  77. B. O'Connor, R. Balasubramanyan, B. Routledge, and N. Smith. 2010. From tweets to polls: Linking text sentiment to public opinion time series. In Proceedings of the AAAI Conference on Weblogs and Social Media. 122--129.Google ScholarGoogle Scholar
  78. A. Ortigosa, J. M. Martin, and R. M. Carro. 2014. Sentiment analysis in facebook and its application to e-learning. Comput. Hum. Behav. 31 (2014), 527--541. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. A. Pak and P. Paroubek. 2010a. Twitter based system: Using Twitter for disambiguating sentiment ambiguous adjectives. In Proceedings of the ACL Workshop on Semantic Evaluation 436--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. A. Pak and P. Paroubek. 2010b. Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of the Language Resources and Evaluation Confrence (LREC’10). 1320--1326.Google ScholarGoogle Scholar
  81. B. Pang, L. Lee, and S. Vaithyanathan. 2002. Thumbs Up?: Sentiment classification using machine-learning techniques. In Proceedings of the Empirical Methods in Natural Language Processing Conference (EMNLP’02). 79--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. T. Proisl, P. Greiner, S. Evert and B. Kabashi. 2013. Simple and robust methods for polarity classification. In Proceedings of the the 7th International Workshop on Semantic Evaluation. 395--401.Google ScholarGoogle Scholar
  83. T. Rao and S. Srivastava. 2015. Twitter sentiment analysis: How to hedge your bets in the stock markets. State of the Art Applications of Social Network Analysis. Springer. 227--247.Google ScholarGoogle Scholar
  84. Repustate. 2015. Repustate System. Retrieved from www.repustate.com.Google ScholarGoogle Scholar
  85. E. Riloff and J. Wiebe. 2003. Learning extraction patterns for subjective expressions. In Proceedings of the Empirical Methods in Natural Language Processing Conference (EMNLP’03). 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. M. Ringsquandl and D. Petkovic. 2013. Analyzing political sentiment on Twitter. In Proceedings of the AAAI Spring Symposium: Analyzing Microtext. 40--47.Google ScholarGoogle Scholar
  87. H. Rui, Y. Liu, and A. Whinston, 2013. Whose and what chatter matters? The effect of tweets on movie sales. Decis. Support Syst. 55, 4 (2013), 863--870. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. H. Saif, M. Fernandez, Y. He, and H. Alani. 2014a. Senticircles for contextual and conceptual semantic sentiment analysis of Twitter. In Proceedings of the Extended Semantic Web Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. H. Saif, M. Fernandez, Y. He, and H. Alani. 2014b. On stopwords, filtering and data sparsity for sentiment analysis of Twitter. In Proceedings of the Language Resources and Evaluation Conference (LREC’14).Google ScholarGoogle Scholar
  90. H. Saif, Y. He, and H. Alani. 2012. Alleviating data sparsity for Twitter sentiment analysis. In Proceedings of the ACM International World Wide Web Conference (WWW’12). 2--9.Google ScholarGoogle Scholar
  91. N. Sanders. 2011. Twitter sentiment corpus. Sanders Analytics 2.0. Retrieved from www.sananalytics.com/lab/twitter-sentiment/.Google ScholarGoogle Scholar
  92. K. R. Scherer. Appraisal Theory, John Wiley 8 Sons Ltd, New York.Google ScholarGoogle Scholar
  93. K. R. Scherer. 2005. What are emotions? And how can they be measured? Soc. Sci. Info. 44, 4 (2005), 695--729.Google ScholarGoogle ScholarCross RefCross Ref
  94. Semantria. 2015. Semantria System. Retrieved from www.semantria.com.Google ScholarGoogle Scholar
  95. SentimentAnalyzer. 2015. SentimentAnalyzer System. Retrieved from www.sentimentanalyzer.appspot.com.Google ScholarGoogle Scholar
  96. H. Sharif, A. Abbasi, F. Zaffar, and D. Zimbra. 2014. Detecting adverse drug reactions using a sentiment classification framework. In Proceedings of the ASE/IEEE International Conference on Social Computing.Google ScholarGoogle Scholar
  97. A. Siganos, E. Vagenas-Nanos, and P. Verwijmeren. 2014. Facebook's daily sentiment and international stock markets. J. Econ. Behav. Org. 107 (2014), 730--743.Google ScholarGoogle ScholarCross RefCross Ref
  98. J. Smailovic, M. Grcar, N. Lavrac, and M. Žnidaršic. 2013. Predictive sentiment analysis of tweets: A stock market application. Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. Springer. 77--88.Google ScholarGoogle Scholar
  99. R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the Empirical Methods in natural Language Processing Conference (EMNLP’13).Google ScholarGoogle Scholar
  100. M. Speriosu, N. Sudan, S. Upadhyay, and J. Baldridge. 2011. Twitter polarity classification with label propagation over lexical links and the follower graph. In Proceedings of the Empirical Methods in natural Language Processing Conference (EMNLP’11). 53--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. S. Tan, Y. Li, H. Sun, Z. Guan, X. Yan, J. Bu, C. Chen, and X. He. 2012. Interpreting the public sentiment variations on Twitter. IEEE Trans. Knowl. Data Eng. 6, 1 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. 2014. Learning sentiment-specific word embedding for Twitter sentiment classification. In Proceedings of the ACL Conference. 1555--1565.Google ScholarGoogle Scholar
  103. P. A. Tapia and J. D. Velásquez. 2014. Twitter sentiment polarity analysis: A novel approach for improving the automated labeling in a text corpora. In International Conference on Active Media Technol. 274--285.Google ScholarGoogle Scholar
  104. P. Tetlock. 2007. Giving content to investor sentiment: The role of media in the stock market. J. Finance 62 (2007), 1139--1168.Google ScholarGoogle ScholarCross RefCross Ref
  105. TextProcessing. 2015. TextProcessing System. Retrieved from www.text-processing.com.Google ScholarGoogle Scholar
  106. Textalytics. 2015. Textalytics System. Retrieved from www.textalytics.com.Google ScholarGoogle Scholar
  107. M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas. 2010. Sentiment strength detection in short informal text. J. Amer. Soc. Info. Sci. Technol. 61, 12 (2010), 2544--2558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. M. Thelwall, K. Buckley, and G. Paltoglou. 2011. Sentiment in Twitter events. J. Amer. Soc. Info. Sci. Technol. 62, 2 (2011), 406--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno, and J. Caro. 2013. Sentiment analysis of facebook statuses using naïve bayes classifier for language learning. In Proceedings International Conference in Information, Intelligence, Systems and Applications (IISA’13). 1--6.Google ScholarGoogle Scholar
  110. A. Tumasjan, T. Sprenger, P. Sandner, and I. Welpe. 2010. Predicting elections with Twitter: What 140 characters reveal about political sentiment. In Proceedings of the AAAI Conference on Weblogs and Social Media. 178--185.Google ScholarGoogle Scholar
  111. P. Turney. 2002. Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In Proceedings of the Annual Meeting of ACL. 417--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Twitter, Inc. IPO Prospectus. 2014. Retrieved from http://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm.Google ScholarGoogle Scholar
  113. Twitter, Inc. Second Quarter 2016 Report. 2016. Retrieved from https://investor.twitterinc.com/results.cfm.Google ScholarGoogle Scholar
  114. UClassify. 2015. UClassify System. Retrieved from www.uclassify.com.Google ScholarGoogle Scholar
  115. A. Vanzo, D. Croce, and R. Basili. 2014. A context-based model for sentiment analysis in Twitter. In Proceedings of the COLING Conference. 2345--2354.Google ScholarGoogle Scholar
  116. A. Verma, K. A. P. Singh, and K. Kanjilal. 2015. Knowledge discovery and Twitter sentiment analysis: Mining public opinion and studying its correlation with popularity of Indian movies. Int. J. Manage. 6, 1 (2015), 697--705.Google ScholarGoogle Scholar
  117. ViralHeat. 2015. ViralHeat System. Retrieved from www.viralheat.com.Google ScholarGoogle Scholar
  118. H. Wang, D. Can, A. Kazemzadeh, F. Bar, and S. Narayanan. 2012. A system for real-time Twitter sentiment analysis of 2012 U.S. presidential election cycle. In Proceedings of the Association for Computational Linguistics Confrence (ACL’12). Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. C. Whitelaw, N. Garg, and S. Argamon. 2005. Using appraisal groups for sentiment analysis. In Proceedings of the 14th ACM International Conference on Information and Knowledge Management. 625--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. J. Wiebe, T. Wilson, and C. Cardie, 2005. Annotating expressions of opinions and emotions in language. Lang. Resourc. Eval. 39, 2--3 (2005), 165--210.Google ScholarGoogle ScholarCross RefCross Ref
  121. T. Winograd. 1986. A language/action perspective on the design of cooperative work. In Proceedings of the ACM Conference on Computer-supported Cooperative Work. 203--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. I. Witten and E. Frank. 2005. Data mining: Practical machine-learning tools and techniques. Morgan Kaufmann Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. B. Xiang and L. Zhou. 2014. Improving Twitter sentiment analysis with topic-based mixture modeling and semi-supervised training. In Proceedings of the ACL Conference. 434--439.Google ScholarGoogle Scholar
  124. W. Zhang and S. Skiena. 2010. Trading strategies to exploit blog and news sentiment. In Proceedings of the International Conference on Web and Social Media (ICWSM’10).Google ScholarGoogle Scholar
  125. L. Zhang, R. Ghosh, M. Dekhil, M. Hsu, and B. Liu. 2011. Combining lexicon-based and learning-based methods for Twitter sentiment analysis. Hewlett-Packard Labs Technical Report.Google ScholarGoogle Scholar
  126. Z. Zhou, X. Zhang, and M. Sanderson. 2014. Sentiment analysis on Twitter through topic-based lexicon expansion. Databases Theory and Applications. Springer International. 98--109.Google ScholarGoogle Scholar
  127. D. Zimbra, H. Chen, and R. F. Lusch. 2015. Stakeholder analyses of firm-related web forums: Applications in stock return prediction. ACM Trans. Manage. Info. Syst. 6, 1 (2015), 1--38. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Management Information Systems
        ACM Transactions on Management Information Systems  Volume 9, Issue 2
        Regular Papers and Research Commentary
        June 2018
        113 pages
        ISSN:2158-656X
        EISSN:2158-6578
        DOI:10.1145/3210372
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 August 2018
        • Accepted: 1 January 2018
        • Revised: 1 September 2017
        • Received: 1 August 2016
        Published in tmis Volume 9, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader