skip to main content
10.1145/3208976.3209018acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Towards Mixed Gröbner Basis Algorithms: the Multihomogeneous and Sparse Case

Published:11 July 2018Publication History

ABSTRACT

One of the biggest open problems in computational algebra is the design of efficient algorithms for Gröbner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faugère, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gröbner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations.

References

  1. A. Awane, A. Chkiriba, and M. Goze. 2005. Formes d'inertie et complexe de Koszul associés à des polynômes plurihomogenes. Revista Matematica Complutense Vol. 18, 1 (2005), 243--260.Google ScholarGoogle Scholar
  2. D. Bayer and D. Mumford. 1993. What can be computed in algebraic geometry?. In Proc. Comp. Alg. Geom. and Commut. Algebra. Cambridge Univ. Press, 1--48.Google ScholarGoogle Scholar
  3. M. R. Bender, J.-C. Faugère, A. Mantzaflaris, and E. Tsigaridas. 2018. Bilinear systems with two supports: Koszul resultant matrices, eigenvalues, and eigenvectors. In Proc. ACM ISSAC. ACM, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. Bihan and F. Sottile. 2011. Fewnomial bounds for completely mixed polynomial systems. Advances in Geometry Vol. 11, 3 (2011), 541--556.Google ScholarGoogle ScholarCross RefCross Ref
  5. N. Botbol. 2011. Implicitization of rational maps. Ph.D. Dissertation. bibinfoschoolUPMC.Google ScholarGoogle Scholar
  6. N. Botbol and M. Chardin. 2017. Castelnuovo Mumford regularity with respect to multigraded ideals. Journal of Algebra Vol. 474 (March. 2017), 361--392.Google ScholarGoogle ScholarCross RefCross Ref
  7. N. Bourbaki. 2007. Algèbre: chapitre 10. Algèbre homologique. Vol. Vol. 9. Springer.Google ScholarGoogle Scholar
  8. M. P. Brodmann and R. Y. Sharp. 2013. Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge University Press.Google ScholarGoogle Scholar
  9. M. Chardin. 2007. Some results and questions on Castelnuovo-Mumford regularity. Lecture Notes in Pure and Applied Mathematics Vol. 254 (2007), 1.Google ScholarGoogle Scholar
  10. D. Cox, J. Little, and D. O'shea. 1992. Ideals, varieties, and algorithms. Springer.Google ScholarGoogle Scholar
  11. D. Cox, J. Little, and D. O'shea. 2006. Using algebraic geometry. Springer.Google ScholarGoogle Scholar
  12. D. Cox, J. Little, and H. Schenck. 2011. Toric varieties. AMS.Google ScholarGoogle Scholar
  13. C. D'Andrea. 2002. Macaulay style formulas for sparse resultants. Trans. Amer. Math. Soc. Vol. 354, 7 (2002), 2595--2629.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. D'Andrea, T. Krick, and M. Sombra. 2013. Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze. Annales Scientifiques de l'École Normale Supérieure Vol. 46 (2013), 549--627.Google ScholarGoogle Scholar
  15. C. Eder and J.-C. Faugère. 2017. A survey on signature-based algorithms for computing Gröbner bases. Journal of Symbolic Computation Vol. 80 (2017), 719 -- 784.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. Eisenbud. 2013. Commutative Algebra: with a view toward algebraic geometry. Vol. Vol. 150. Springer.Google ScholarGoogle Scholar
  17. M. S. El Din and É. Schost. 2017. Bit complexity for multi-homogeneous polynomial system solving - Application to polynomial minimization. Journal of Symbolic Computation (2017).Google ScholarGoogle Scholar
  18. I. Z. Emiris. 1996. On the complexity of sparse elimination. Journal of Complexity Vol. 12, 2 (1996), 134--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. C. Faugère. 2002. A New Efficient Algorithm for Computing Gröbner Bases Without Reduction to Zero (F5) Proc. ACM ISSAC. ACM, 75--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J.-C. Faugère, M. S. El Din, and P.-J. Spaenlehauer. 2011. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity. Journal of Symbolic Computation Vol. 46, 4 (2011), 406--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. 1993. Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation Vol. 16, 4 (1993), 329--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J.-C. Faugère, P.-J. Spaenlehauer, and J. Svartz. 2014. Sparse Gröbner bases: the unmixed case. In Proc. ACM ISSAC. ACM, 178--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. I. M. Gelfand, M. Kapranov, and A. Zelevinsky. 2008. Discriminants, resultants, and multidimensional determinants. Springer.Google ScholarGoogle Scholar
  24. M. Giusti, G. Lecerf, and B. Salvy. 2001. A Gröbner free alternative for polynomial system solving. Journal of complexity Vol. 17, 1 (2001), 154--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. T. Hà and A. Van Tuyl. 2004. The regularity of points in multi-projective spaces. Journal of Pure and Applied Algebra Vol. 187, 1--3 (March. 2004), 153--167.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. D. Hauenstein and J. I. Rodriguez. 2015. Multiprojective witness sets and a trace test. arXiv preprint arXiv:1507.07069 (2015).Google ScholarGoogle Scholar
  27. M. I. Herrero, G. Jeronimo, and J. Sabia. 2013. Affine solution sets of sparse polynomial systems. Journal of Symbolic Computation Vol. 51 (2013), 34--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Lazard. 1983. Gröbner-Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations. In Proc. EUROCAL. Springer-Verlag, 146--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T.-Y. Li. 1997. Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta numerica Vol. 6 (1997), 399--436.Google ScholarGoogle Scholar
  30. D. Maclagan and G. G. Smith. 2004. Multigraded Castelnuovo-Mumford Regularity. J. Reine Angew. Math. Vol. 2004, 571 (Jan.. 2004).Google ScholarGoogle ScholarCross RefCross Ref
  31. D. Maclagan and G. G. Smith. 2005. Uniform bounds on multigraded regularity. J. Algebraic Geom. Vol. 14 (2005), 137--164. arXiv preprint math/0305215.Google ScholarGoogle ScholarCross RefCross Ref
  32. E. Miller and B. Sturmfels. 2004. Combinatorial commutative algebra. Springer.Google ScholarGoogle Scholar
  33. J. Sidman and A. Van Tuyl. 2006. Multigraded regularity: syzygies and fat points. Beitr"age Algebra Geom Vol. 47, 1 (2006), 67--87.Google ScholarGoogle Scholar
  34. B. Sturmfels. 1994. On the Newton polytope of the resultant. Journal of Algebraic Combinatorics Vol. 3, 2 (1994), 207--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. B. Sturmfels and A. Zelevinsky. 1994. Multigraded resultants of Sylvester type. Journal of Algebra Vol. 163, 1 (1994), 115--127.Google ScholarGoogle ScholarCross RefCross Ref
  36. N. Trung. 1998. The Castelnuovo regularity of the Rees algebra and the associated graded ring. Trans. Amer. Math. Soc. Vol. 350, 7 (1998), 2813--2832.Google ScholarGoogle ScholarCross RefCross Ref
  37. B. Van der Waerden. 1978. On varieties in multiple-projective spaces. In Indagationes Mathematicae (Proceedings), Vol. 81. Elsevier, 303--312.Google ScholarGoogle Scholar
  38. J. Weyman and A. Zelevinsky. 1994. Multigraded formulae for multigraded resultants. J. Algebr. Geom Vol. 3, 4 (1994), 569--597.Google ScholarGoogle Scholar

Index Terms

  1. Towards Mixed Gröbner Basis Algorithms: the Multihomogeneous and Sparse Case

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISSAC '18: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
      July 2018
      418 pages
      ISBN:9781450355506
      DOI:10.1145/3208976

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader