skip to main content
survey

A Survey of Communication Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing Integration

Authors Info & Claims
Published:28 January 2019Publication History
Skip Abstract Section

Abstract

The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.

References

  1. O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes. 2016. Operating systems for low-end devices in the internet of things: A survey. IEEE Internet of Things Journal 3, 5 (Oct. 2016), 720--734.Google ScholarGoogle ScholarCross RefCross Ref
  2. Y. Xu, V. Mahendran, W. Guo, and S. Radhakrishnan. 2017. Fairness in fog networks: Achieving fair throughput performance in MQTT-based IoTs. In Proceedings of the 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC’17). 191--196.Google ScholarGoogle Scholar
  3. P. Sethi and Smruti R. Sarangi. 2017. Internet of things: Architectures, protocols, and applications. Journal of Electrical and Computer Engineering (2017), 1--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. 2014. On the integration of cloud computing and internet of things. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud (FICLOUD’14). IEEE Computer Society, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Huo, T. C. Chien, and P. H. Chou. 2014. Middleware for IoT-Cloud integration across application domains. IEEE Design Test 31, 3 (June 2014), 21--31.Google ScholarGoogle Scholar
  6. G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio. 2014. Integration of agent-based and cloud computing for the smart objects-oriented IoT. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD’14). 493--498.Google ScholarGoogle Scholar
  7. T. Pflanzner and A. Kertesz. 2016. A survey of IoT cloud providers. In Proceedings of the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO’16). 730--735.Google ScholarGoogle Scholar
  8. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the internet of things. In Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing (MCC’12). ACM, New York, 13--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa, and I. Yaqoob. 2017. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 5 (2017), 5247--5261.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. M. Babu, A. J. Lakshmi, and B. T. Rao. 2015. A study on cloud based internet of things: CloudIoT. In Proceedings of the 2015 Global Conference on Communication Technologies (GCCT’15). 60--65.Google ScholarGoogle Scholar
  11. M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. 2016. Middleware for internet of things: A survey. IEEE Internet of Things Journal 3, 1 (Feb. 2016), 70--95.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. S. Solapure and H. Kenchannavar. 2016. Internet of things: A survey related to various recent architectures and platforms available. In Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI’16). 2296--2301.Google ScholarGoogle Scholar
  13. J. Granjal, E. Monteiro, and J. Sá Silva. 2015. Security for the internet of things: A survey of existing protocols and open research issues. IEEE Communications Surveys Tutorials 17, 3 (3rd quarter, 2015), 1294--1312.Google ScholarGoogle Scholar
  14. A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi. 2015. Toward better horizontal integration among IoT services. IEEE Communications Magazine 53, 9 (Sept. 2015), 72--79.Google ScholarGoogle ScholarCross RefCross Ref
  15. Andrew (PrismTech) Foster. 2014. Messaging Technologies for the Industrial Internet and the Internet of Things. Retrieved February 15, 2018.Google ScholarGoogle Scholar
  16. N. Naik. 2017. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE’17). 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Ramirez and C. Pedraza. 2017. Performance analysis of communication protocols for internet of things platforms. In Proceedings of the 2017 IEEE Colombian Conference on Communications and Computing (COLCOM’17). 1--7.Google ScholarGoogle Scholar
  18. S. N. Swamy, D. Jadhav, and N. Kulkarni. 2017. Security threats in the application layer in IOT applications. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC’17). 477--480.Google ScholarGoogle Scholar
  19. M. B. Yassein, M. Q. Shatnawi, and D. Al-zoubi. 2016. Application layer protocols for the internet of things: A survey. In Proceedings of the 2016 International Conference on Engineering MIS (ICEMIS’16). 1--4.Google ScholarGoogle Scholar
  20. L. Nastase. 2017. Security in the internet of things: A survey on application layer protocols. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS’17). 659--666.Google ScholarGoogle ScholarCross RefCross Ref
  21. Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego, and Jesus Alonso-Zarate. 2015. A survey on application layer protocols for the internet of things. Transaction on IoT and Cloud Computing 3, 1 (2015), 11--17.Google ScholarGoogle Scholar
  22. Pavel Masek, Jiri Hosek, Krystof Zeman, Martin Stusek, Dominik Kovac, Petr Cika, Jan Masek, Sergey Andreev, and Franz Kropfl. 2016. Implementation of true IoT vision: Survey on enabling protocols and hands-on experience. International Journal of Distributed Sensor Networks 12, 4 (2016), 8160282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. OpenFog Consortium. 2016. OpenFog. Retrieved February 2, 2018 from https://www.openfogconsortium.org/.Google ScholarGoogle Scholar
  24. Edge Computing Consortium (ECC) and Alliance of Industrial Internet (AII). 2017. Edge computing reference architecture 2.0. Retrieved from http://en.ecconsortium.org/Uploads/file/20180328/1522232376480704.pdf.Google ScholarGoogle Scholar
  25. mF2C Consortium. 2017. mF2C project. Retrieved from http://www.mf2c-project.eu/.Google ScholarGoogle Scholar
  26. E. Marin-Tordera, Xavi Masip, Jordi Garcia Almiñana, Admela Jukan, Guang-Jie Ren, and Jiafeng Zhu. 2017. Do we all really know what a fog node is? Current trends towards an open definition. Computer Communications. 109 (Sep. 2017), 117--130.Google ScholarGoogle Scholar
  27. Y. Jia, E. Bodanese, C. Phillips, J. Bigham, and R. Tao. 2014. Improved reliability of large scale publish/subscribe based MOMs using model checking. In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS’14). 1--8.Google ScholarGoogle Scholar
  28. A. Antonić, M. Marjanović, P. Skočir, and I. P. Žarko. 2015. Comparison of the CUPUS middleware and MQTT protocol for smart city services. In Proceedings of the 2015 13th International Conference on Telecommunications (ConTEL’15). 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  29. Samia Allaoua Chelloug and Mohamed A. El-Zawawy. 2017. Middleware for internet of things: Survey and challenges. Intelligent Automation 8 Soft Computing 24 (2017), 1--9.Google ScholarGoogle Scholar
  30. A. Azzará, S. Bocchino, P. Pagano, G. Pellerano, and M. Petracca. 2013. Middleware solutions in WSN: The IoT oriented approach in the ICSI project. In Proceedings of the 2013 21st International Conference on Software, Telecommunications and Computer Networks (SoftCOM’13). 1--6.Google ScholarGoogle Scholar
  31. M. Veeramanikandan and S. Sankaranarayanan. 2017. Publish/subscribe broker based architecture for fog computing. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS’17). 1024--1026.Google ScholarGoogle Scholar
  32. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. 1999. An efficient multicast protocol for content-based publish-subscribe systems. In Proceedings of the 19th IEEE International Conference on Distributed Computing Systems (Cat. No.99CB37003). 262--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Annika Hinze, Kai Sachs, and Alejandro Buchmann. 2009. Event-based applications and enabling technologies. In Proceedings of the 3rd ACM International Conference on Distributed Event-Based Systems (DEBS’09). ACM, New York, Article 1, 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Satvik Patel, Sunil Jardosh, Ashwin Makwana, and Amit Thakkar. 2017. Publish/Subscribe mechanism for IoT: A survey of event matching algorithms and open research challenges. In Proceedings of the International Conference on Communication and Networks, Nilesh Modi, Pramode Verma, and Bhushan Trivedi (Eds.). Springer, Singapore, 287--294.Google ScholarGoogle ScholarCross RefCross Ref
  35. Kai Sachs, Stefan Appel, Samuel Kounev, and Alejandro Buchmann. 2010. Benchmarking publish/subscribe-based messaging systems. In Database Systems for Advanced Applications, Masatoshi Yoshikawa, Xiaofeng Meng, Takayuki Yumoto, Qiang Ma, Lifeng Sun, and Chiemi Watanabe (Eds.). Springer, Berlin, 203--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Kerenen, M. Koster, and J. Jimenez. 2017. Publish-Subscribe Broker for the Constrained Application Protocol. RFC. RFC Editor. 1--23.Google ScholarGoogle Scholar
  37. I. Fette and A. Melnikov. 2011. The WebSocket Protocol. RFC 6455. RFC Editor. http://www.rfc-editor.org/rfc/rfc6455.txt.Google ScholarGoogle Scholar
  38. S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui. 2017. QUIC: Better for what and for whom? In Proceedings of the 2017 IEEE International Conference on Communications (ICC’17). 1--6.Google ScholarGoogle Scholar
  39. Y. Cui, T. Li, C. Liu, X. Wang, and M. Kãihlewind. 2017. Innovating transport with QUIC: Design approaches and research challenges. IEEE Internet Computing 21, 2 (Mar. 2017), 72--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP: An experimental investigation of QUIC. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC’15). ACM, New York, 609--614. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter, Paul J. Leach, and Tim Berners-Lee. 1999. Hypertext Transfer Protocol -- HTTP/1.1. RFC 2616. RFC Editor. http://www.rfc-editor.org/rfc/rfc2616.txt. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Andrew Banks and Rahul Gupta (Ed.). 29 October 2014. MQTT Version 3.1.1. OASIS Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.Google ScholarGoogle Scholar
  43. Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol (CoAP). RFC 7252. RFC Editor. http://www.rfc-editor.org/rfc/rfc7252.txt.Google ScholarGoogle Scholar
  44. OASIS. 29 October 2012. Advanced Message Queuing Protocol (AMQP) Version 1.0. OASIS Standard. http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.Google ScholarGoogle Scholar
  45. Object Management Group (OMG). 2015. Data distribution service (DDS) version 1.4. (March 2015), 1--20.Google ScholarGoogle Scholar
  46. P. Saint-Andre. 2004. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 3920. RFC Editor.Google ScholarGoogle Scholar
  47. M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540. RFC Editor. http://www.rfc-editor.org/rfc/rfc7540.txt.Google ScholarGoogle Scholar
  48. C. Severance. 2015. Roy T. Fielding: Understanding the REST style. Computer 48, 6 (June 2015), 7--9.Google ScholarGoogle ScholarCross RefCross Ref
  49. Z. B. Babovic, J. Protic, and V. Milutinovic. 2016. Web performance evaluation for internet of things applications. IEEE Access 4 (2016), 6974--6992.Google ScholarGoogle ScholarCross RefCross Ref
  50. W. Shang, Y. Yu, R. E. Droms, and L. Zhang. 2016. Challenges in IoT Networking via TCP/IP Architecture. NDN Project, Technical Report. NDN-00382 (2016), 7.Google ScholarGoogle Scholar
  51. T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. RFC Editor. http://www.rfc-editor.org/rfc/rfc5246.txt.Google ScholarGoogle Scholar
  52. K. Bhargavan, B. Blanchet, and N. Kobeissi. 2017. Verified models and reference implementations for the TLS 1.3 standard candidate. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP’17). 483--502.Google ScholarGoogle Scholar
  53. X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu. 2016. Multiple handshakes security of TLS 1.3 candidates. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP’16). 486--505.Google ScholarGoogle Scholar
  54. T. Savolainen, N. Javed, and B. Silverajan. 2014. Measuring energy consumption for RESTful interactions in 3GPP IoT nodes. In Proceedings of the 2014 7th IFIP Wireless and Mobile Networking Conference (WMNC’14). 1--8.Google ScholarGoogle Scholar
  55. Daniel Stenberg. 2014. HTTP2 explained. SIGCOMM Computer Communication Review 44, 3 (July 2014), 120--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and B. Raymor. 2018. CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets. RFC 8323. RFC Editor.Google ScholarGoogle Scholar
  57. H. V. Nguyen and L. L. Iacono. 2015. REST-ful CoAP message authentication. In Proceedings of the 2015 International Workshop on Secure Internet of Things (SIoT’15). 35--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. N. Correia, D. Sacramento, and G. Schãijtz. 2016. Dynamic aggregation and scheduling in CoAP/Observe-Based wireless sensor networks. IEEE Internet of Things Journal 3, 6 (Dec. 2016), 923--936.Google ScholarGoogle ScholarCross RefCross Ref
  59. M. Frustaci, P. Pace, G. Aloi, and G. Fortino. 2017. Evaluating critical security issues of the IoT world: Present and Future challenges. IEEE Internet of Things Journal PP, 99 (2017), 1--1.Google ScholarGoogle Scholar
  60. E. Rescorla and N. Modadugu. 2012. Datagram Transport Layer Security Version 1.2. RFC 6347. RFC Editor. http://www.rfc-editor.org/rfc/rfc6347.txt.Google ScholarGoogle Scholar
  61. M. Panwar and A. Kumar. 2015. Security for IoT: An effective DTLS with public certificates. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications. 163--166.Google ScholarGoogle Scholar
  62. S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. 2013. Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors Journal 13, 10 (Oct. 2013), 3711--3720.Google ScholarGoogle ScholarCross RefCross Ref
  63. S. Raza, D. Trabalza, and T. Voigt. 2012. 6LoWPAN compressed DTLS for CoAP. In Proceedings of the 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems. 287--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. V. Lakkundi and K. Singh. 2014. Lightweight DTLS implementation in CoAP-based internet of things. In Proceedings of the 20th Annual International Conference on Advanced Computing and Communications (ADCOM’14). 7--11.Google ScholarGoogle Scholar
  65. Eclipse Mosquitto. 2018. Retrieved March 1, 2018 from http://mosquitto.org/.Google ScholarGoogle Scholar
  66. Feng Lee. 2016. EMQ 2.0 Documentation.Google ScholarGoogle Scholar
  67. The Apache Software Foundation. 2010. Apache ActiveMQ. Retrieved March 1, 2018 from http://activemq.apache.org/.Google ScholarGoogle Scholar
  68. HiveMQ. 2015. HiveMQ - Enterprise MQTT Broker. Retrieved March 1, 2018 from https://www.hivemq.com/.Google ScholarGoogle Scholar
  69. Nick Maynard. 2015. MQTT and IBM MessageSight: Secure, reliable communications for the next generation of resilient mobile applications. Retrieved December 20, 2017 from https://www.ibm.com/developerworks/websphere/techjournal/1501_maynard/1501_maynard.htmlf.Google ScholarGoogle Scholar
  70. The JoramMQ by ScalAgent. 2017. JoramMQ, a distributed broker for the Internet of Things. Retrieved March 1, 2018 from http://joram.ow2.org/.Google ScholarGoogle Scholar
  71. Pivotal Software. 2017. Rabbit MQTT Broker. Retrieved March 1, 2018 from http://www.rabbitmq.com/.Google ScholarGoogle Scholar
  72. VerneMQ. 2017. VerneMQ Broker. Retrieved March 1, 2018 from https://vernemq.com/.Google ScholarGoogle Scholar
  73. N. Tantitharanukul, K. Osathanunkul, K. Hantrakul, P. Pramokchon, and P. Khoenkaw. 2017. MQTT-Topics management system for sharing of open data. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT’17). 62--65.Google ScholarGoogle Scholar
  74. J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez, and P. Boronat. 2015. Handling mobility in IoT applications using the MQTT protocol. In Proceedings of the 2015 Internet Technologies and Applications (ITA’15). 245--250.Google ScholarGoogle Scholar
  75. A. Stanford-Clark and H. Linh Troung. 2013. MQTT for sensor networks (MQTT-SN) protocol specification version 1.2. Mqtt.Org (2013). http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN.Google ScholarGoogle Scholar
  76. K. Govindan and A. P. Azad. 2015. End-to-end service assurance in IoT MQTT-SN. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC’15). 290--296.Google ScholarGoogle Scholar
  77. C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller, T. Ebner, T. Ruprechter, and G. Pregartner. 2015. Securing smart maintenance services: Hardware-security and TLS for MQTT. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN’15). 1243--1250.Google ScholarGoogle Scholar
  78. A. Corsaro. 2014. The Data Distribution Service Tutorial.Google ScholarGoogle Scholar
  79. G. Farabaugh, G. Pardo-Castellote, and R. Warren. 2005. An introduction to DDS and data-centric communications. Real-Time Innovations.August (2005).Google ScholarGoogle Scholar
  80. Gustavo B. Baptista, Felipe Carvalho, Sergio Colcher, and Markus Endler. 2001. A middleware for data-centric and dynamic distributed complex event processing for IoT real-time analytics in the cloud.Google ScholarGoogle Scholar
  81. J. Yang, K. Sandström, T. Nolte, and M. Behnam. 2012. Data distribution service for industrial automation. In Proceedings of the 2012 IEEE 17th International Conference on Emerging Technologies Factory Automation (ETFA’12). 1--8.Google ScholarGoogle Scholar
  82. M. Hamilton, H. Choi, S. Rhee, G. Subramanian, Y. Dai, E. Sin, S. Sonck Thiebaut, G. Pardo-Castellote, and A. Bose. 2002. Real-Time Publish Subscribe (RTPS) Wire Protocol Specification. RFC. RFC Editor.Google ScholarGoogle Scholar
  83. J. F. Inglés-Romero, A. Romero-Garcés, C. Vicente-Chicote, and J. Martínez. 2017. A model-driven approach to enable adaptive QoS in DDS-Based middleware. IEEE Transactions on Emerging Topics in Computational Intelligence 1, 3 (June 2017), 176--187.Google ScholarGoogle ScholarCross RefCross Ref
  84. Inc Twin Oaks Computing. 2011. What can DDS do for You? (2011). Retrieved January 3, 2018 from https://www.omg.org/hot-topics/documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/.Google ScholarGoogle Scholar
  85. S. Pradhan, W. Emfinger, A. Dubey, W. R. Otte, D. Balasubramanian, A. Gokhale, G. Karsai, and A. Coglio. 2014. Establishing secure interactions across distributed applications in satellite clusters. In Proceedings of the 2014 IEEE International Conference on Space Mission Challenges for Information Technology. 67--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Object Management Group (OMG). 2017. OpenDDS Developer’s Guide.Google ScholarGoogle Scholar
  87. J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah. 2013. Performance evaluation of RESTful web services and AMQP protocol. In Proceedings of the 2013 5th International Conference on Ubiquitous and Future Networks (ICUFN’13). 810--815.Google ScholarGoogle Scholar
  88. E. C. M. van der Linden, Jonas Wallgren, and Peter Jonsson. 2017. A latency comparison of IoT protocols in MES.Google ScholarGoogle Scholar
  89. A. Hornsby and R. Walsh. 2010. From instant messaging to cloud computing, an XMPP review. In Proceedings of the IEEE International Symposium on Consumer Electronics (ISCE’). 1--6.Google ScholarGoogle Scholar
  90. D. Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi, and M. A. Spirito. 2012. The VIRTUS middleware: An XMPP based architecture for secure IoT communications. In Proceedings of the 2012 21st International Conference on Computer Communications and Networks (ICCCN’12). 1--6.Google ScholarGoogle Scholar
  91. D. Schuster, P. Grubitzsch, D. Renzel, I. Koren, R. Klauck, and M. Kirsche. 2014. Global-scale federated access to smart objects using XMPP. In Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom). 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. X. Che and S. Maag. 2013. A passive testing approach for protocols in internet of things. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. 678--684. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. A. Hornsby and E. Bail. 2009. μXMPP: Lightweight implementation for low power operating system Contiki. In Proceedings of the 2009 International Conference on Ultra Modern Telecommunications Workshops. 1--5.Google ScholarGoogle Scholar
  94. H. Wang, D. Xiong, P. Wang, and Y. Liu. 2017. A lightweight XMPP publish/subscribe scheme for resource-constrained IoT devices. IEEE Access 5 (2017), 16393--16405.Google ScholarGoogle ScholarCross RefCross Ref
  95. Istabraq M. Al-Joboury and Emad H. Al-Hemiary. 2018. Performance analysis of internet of things protocols based fog/cloud over high traffic. Journal of Fundamental and Applied Sciences 10, 6S (2018), 176--181. http://www.jfas.info/index.php/jfas/article/view/4236.Google ScholarGoogle Scholar
  96. J. Joshi, V. Rajapriya, S. R. Rahul, P. Kumar, S. Polepally, R. Samineni, and D. G. K. Tej. 2017. Performance enhancement and IoT based monitoring for smart home. In Proceedings of the 2017 International Conference on Information Networking (ICOIN). 468--473.Google ScholarGoogle ScholarCross RefCross Ref
  97. D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan. 2014. Performance evaluation of MQTT and CoAP via a common middleware. In Proceedings of the 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP’14). 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  98. N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali. 2013. Comparison of two lightweight protocols for smartphone-based sensing. In Proceedings of the 2013 IEEE 20th Symposium on Communications and Vehicular Technology in the Benelux (SCVT’13). 1--6.Google ScholarGoogle Scholar
  99. S. Mijovic, E. Shehu, and C. Buratti. 2016. Comparing application layer protocols for the internet of things via experimentation. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI’16). 1--5.Google ScholarGoogle Scholar
  100. M. Iglesias-Urkia, A. Orive, M. Barcelo, A. Moran, J. Bilbao, and A. Urbieta. 2017. Towards a lightweight protocol for industry 4.0: An implementation based benchmark. In Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM’17). 1--6.Google ScholarGoogle Scholar
  101. T. Dimčić, S. Krčo, and N. Gligorić. 2012. CoAP (Constrained Application Protocol) implementation in M2M environmental monitoring system. E-society Journal (2012), 229--234.Google ScholarGoogle Scholar
  102. M. Saleh, M. A. Abdou, and M. Aboulhassan. 2016. Assessing the use of IP network management protocols in smart grids. In Proceedings of the 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA’16). 1--6.Google ScholarGoogle Scholar
  103. W. Gao, J. H. Nguyen, W. Yu, C. Lu, D. T. Ku, and W. G. Hatcher. 2017. Toward emulation-based performance assessment of constrained application protocol in dynamic networks. IEEE Internet of Things Journal 4, 5 (Oct. 2017), 1597--1610.Google ScholarGoogle ScholarCross RefCross Ref
  104. Y. Chen and T. Kunz. 2016. Performance evaluation of IoT protocols under a constrained wireless access network. In Proceedings of the 2016 International Conference on Selected Topics in Mobile Wireless Networking (MoWNeT’16). 1--7.Google ScholarGoogle Scholar
  105. Laila Daniel, Markku Kojo, and Mikael Latvala. 2014. Experimental evaluation of the CoAP, HTTP and SPDY transport services for internet of things. In Internet and Distributed Computing Systems, Giancarlo Fortino, Giuseppe Di Fatta, Wenfeng Li, Sergio Ochoa, Alfredo Cuzzocrea, and Mukaddim Pathan (Eds.). Springer International Publishing, Cham, 111--123.Google ScholarGoogle Scholar
  106. Diego Londoño and Sandra Céspedes. 2016. Performance evaluation of CoAP and HTTP/2 in web applications. CEUR Workshop Proceedings 1727 (2016), 25--27.Google ScholarGoogle Scholar
  107. U. Tandale, B. Momin, and D. P. Seetharam. 2017. An empirical study of application layer protocols for IoT. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS’17). 2447--2451.Google ScholarGoogle Scholar
  108. S. Bandyopadhyay and A. Bhattacharyya. 2013. Lightweight internet protocols for web enablement of sensors using constrained gateway devices. In Proceedings of the 2013 International Conference on Computing, Networking and Communications (ICNC’13). 334--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. P. Thota and Y. Kim. 2016. Implementation and comparison of M2M protocols for internet of things. In Proceedings of the 2016 4th International Conference on Applied Computing and Information Technology/3rd International Conference on Computational Science/Intelligence and Applied Informatics/1st International Conference on Big Data, Cloud Computing, Data Science Engineering (ACIT-CSII-BCD’16). 43--48.Google ScholarGoogle Scholar
  110. W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota. 2011. Evaluation of constrained application protocol for wireless sensor networks. In Proceedings of the 2011 18th IEEE Workshop on Local Metropolitan Area Networks (LANMAN’11). 1--6.Google ScholarGoogle Scholar
  111. J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni. 2015. A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC’15). 931--936.Google ScholarGoogle Scholar
  112. Qi Jing, Athanasios Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu. 2014. Security of the internet of things: Perspectives and challenges. Wireless Networks 20, 8 (Nov. 2014), 2481--2501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. R. T. Tiburski, L. A. Amaral, E. D. Matos, and F. Hessel. 2015. The importance of a standard security architecture for SOA-based IOT middleware. IEEE Communications Magazine 53, 12 (Dec. 2015), 20--26.Google ScholarGoogle ScholarCross RefCross Ref
  114. Paul Fremantle and Philip Scott. 2015. A security survey of middleware for the internet of things.Google ScholarGoogle Scholar
  115. D. Dragomir, L. Gheorghe, S. Costea, and A. Radovici. 2016. A survey on secure communication protocols for IoT systems. In Proceedings of the 2016 International Workshop on Secure Internet of Things (SIoT’16). 47--62.Google ScholarGoogle Scholar
  116. N. J. Al Fardan and K. G. Paterson. 2013. Lucky thirteen: Breaking the TLS and DTLS record protocols. In Proceedings of the 2013 IEEE Symposium on Security and Privacy. 526--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. R. T. Tiburski, L. A. Amaral, E. de Matos, D. F. G. de Azevedo, and F. Hessel. 2017. Evaluating the use of TLS and DTLS protocols in IoT middleware systems applied to E-health. In Proceedings of the 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC’17). 480--485.Google ScholarGoogle Scholar
  118. Eclipse IoT Working Group, IEEE IoT, and AGILE IoT. 2016. IoT developer survey. (2016), 1--39. Retrieved December 22, 2017.Google ScholarGoogle Scholar
  119. Francisco Carpio, Admela Jukan, Ana Isabel Martín Sanchez, Nina Amla, and Nicole Kemper. 2017. Beyond production indicators: A novel smart farming application and system for animal welfare. In Proceedings of the 4th International Conference on Animal-Computer Interaction (ACI’17). ACM, New York, Article 7, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Spring Project. Building a RESTful Web Service. ({n.d.}). https://spring.io/guides/gs/rest-service/.Google ScholarGoogle Scholar
  121. G. Peralta, M. Iglesias-Urkia, M. Barcelo, R. Gomez, A. Moran, and J. Bilbao. 2017. Fog computing based efficient IoT scheme for the Industry 4.0. In Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM’17). 1--6.Google ScholarGoogle Scholar
  122. P. Desai, A. Sheth, and P. Anantharam. 2015. Semantic gateway as a service architecture for IoT interoperability. In Proceedings of the 2015 IEEE International Conference on Mobile Services. 313--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. C. Lerche, N. Laum, F. Golatowski, D. Timmermann, and C. Niedermeier. 2012. Connecting the web with the web of things: Lessons learned from implementing a CoAP-HTTP proxy. In Proceedings of the 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS’12), Las Vegas. 1--8.Google ScholarGoogle Scholar
  124. A. Rahman, T. Fossati, A. Castellani, S. Loreto, and E. Dijk. 2015. Guidelines for HTTP-CoAP Mapping Implementations. RFC. RFC Editor. 1--32 pages.Google ScholarGoogle Scholar
  125. F. Van den Abeele, E. Dalipi, I. Moerman, P. Demeester, and J. Hoebeke. 2016. Improving user interactions with constrained devices in the web of things. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT’16). 153--158.Google ScholarGoogle Scholar
  126. J. Esquiagola, L. Costa, P. Calcina, and M. Zuffo. 2017. Enabling CoAP into the swarm: A transparent interception CoAP-HTTP proxy for the internet of things. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS’17). 1--6.Google ScholarGoogle Scholar
  127. A. B. Sulaeman, F. A. Ekadiyanto, and R. F. Sari. 2016. Performance evaluation of HTTP-CoAP proxy for wireless sensor and actuator networks. In Proceedings of the 2016 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob’16). 68--73.Google ScholarGoogle Scholar
  128. N. Le Sommer, L. Touseau, Y. Mahéo, M. Auzias, and F. Raimbault. 2016. A disruption-tolerant RESTful support for the web of things. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud’16). 17--24.Google ScholarGoogle Scholar
  129. A. P. Castellani, T. Fossati, and S. Loreto. 2012. HTTP-CoAP cross protocol proxy: An implementation viewpoint. In Proceedings of the 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS’12), Las Vegas, NV. 1--6.Google ScholarGoogle Scholar
  130. M. Buschsieweke and M. Güneş. 2017. Authentication for the web of things: Secure end-to-end authentication between CoAP and HTTP. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’17). 1--5.Google ScholarGoogle Scholar
  131. M. Buschsieweke and M. Güneş. 2018. Authentication for the web of things - secure end-to-end authentication between CoAP and HTTP. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’17).Google ScholarGoogle Scholar

Index Terms

  1. A Survey of Communication Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing Integration

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 51, Issue 6
      November 2019
      786 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3303862
      • Editor:
      • Sartaj Sahni
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 January 2019
      • Accepted: 1 August 2018
      • Revised: 1 July 2018
      • Received: 1 April 2018
      Published in csur Volume 51, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • survey
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format