skip to main content
10.1145/3297280.3299732acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

Efficient spatio-temporal RDF query processing in large dynamic knowledge bases

Published:08 April 2019Publication History

ABSTRACT

An ever-increasing number of real-life applications produce spatiotemporal data that record the position of moving objects (persons, cars, vessels, aircrafts, etc.). In order to provide integrated views with other relevant data sources (e.g., weather, vessel databases, etc.), this data is represented in RDF and stored in knowledge bases with the following notable features: (a) the data is dynamic, since new spatio-temporal data objects are recorded every second, and (b) the size of the data is vast and can easily lead to scalability issues. As a result, this raises the need for efficient management of large-scale, dynamic, spatio-temporal RDF data. In this paper, we propose boosting the performance of spatio-temporal RDF queries by compressing the spatio-temporal information of each RDF entity into a unique integer value. We exploit this encoding in a filter-and-refine framework for processing of spatio-temporal RDF data efficiently. By means of an extensive evaluation on real-life data sets, we demonstrate the merits of our framework.

References

  1. Ibrahim Abdelaziz, Razen Harbi, Semih Salihoglu, Panos Kalnis, and Nikos Mamoulis. 2015. SPARTex: A Vertex-Centric Framework for RDF Data Analytics. PVLDB 8, 12 (2015), 1880--1891. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Christophe Claramunt, Cyril Ray, Elena Camossi, Anne-Laure Jousselme, Melita Hadzagic, Gennady L. Andrienko, Natalia V. Andrienko, Yannis Theodoridis, George A. Vouros, and Loïc Salmon. 2017. Maritime data integration and analysis: recent progress and research challenges. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017. 192--197.Google ScholarGoogle Scholar
  3. Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. 2014. TriAD: A distributed shared-nothing RDF engine based on asynchronous message passing. In Proceedings of SIGMOD. 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Mohammad Hammoud, Dania Abed Rabbou, Reza Nouri, Seyed-Mehdi-Reza Beheshti, and Sherif Sakr. 2015. DREAM: Distributed RDF Engine with Adaptive Query Planner and Minimal Communication. PVLDB 8, 6 (2015), 654--665. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, and Nikos Mamoulis. 2015. Evaluating SPARQL Queries on Massive RDF Datasets. PVLDB 8, 12 (2015), 1848--1851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jiewen Huang, Daniel J. Abadi, and Kun Ren. 2011. Scalable SPARQL Querying of Large RDF Graphs. PVLDB 4, 11 (2011), 1123--1134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Christian S. Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and Update Efficient B+-Tree Based Indexing of Moving Objects. In (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004. 768--779. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Christian S. Jensen, Dalia Tiesyte, and Nerius Tradisauskas. 2006. Robust B+-Tree-Based Indexing of Moving Objects. In 7th International Conference on Mobile Data Management (MDM 2006), Nara, Japan, May 9--13, 2006. 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-tree using Fractals. In VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases, September 12--15, 1994, Santiago de Chile, Chile. 500--509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Manolis Koubarakis and Kostis Kyzirakos. 2010. Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In Proceedings of ESWC. 425--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kostis Kyzirakos, Manos Karpathiotakis, Konstantina Bereta, George Garbis, Charalampos Nikolaou, Panayiotis Smeros, Stella Giannakopoulou, Kallirroi Dogani, and Manolis Koubarakis. 2013. The Spatiotemporal RDF Store Strabon. In Proceedings of SSTD. 496--500.Google ScholarGoogle ScholarCross RefCross Ref
  12. John Liagouris, Nikos Mamoulis, Panagiotis Bouros, and Manolis Terrovitis. 2014. An Effective Encoding Scheme for Spatial RDF Data. PVLDB 7 (2014), 1271--1282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Trans. Knowl. Data Eng. 13, 1 (2001), 124--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable management of RDF data. VLDB J. 19, 1 (2010), 91--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Peng Peng, Lei Zou, M. Tamer Özsu, Lei Chen, and Dongyan Zhao. 2016. Processing SPARQL queries over distributed RDF graphs. VLDB J. 25, 2 (2016), 243--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Matthew Perry, Prateek Jain, and Amit P. Sheth. 2011. SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries. In Geospatial Semantics and the Semantic Web. 61--86.Google ScholarGoogle Scholar
  17. Dong Wang, Lei Zou, Yansong Feng, Xuchuan Shen, Jilei Tian, and Dongyan Zhao. 2013. S-store: An Engine for Large RDF Graph Integrating Spatial Information. In Database Systems for Advanced Applications, 18th International Conference, DASFAA 2013, Wuhan, China, April 22--25, 2013. Proceedings, Part II. 31--47.Google ScholarGoogle Scholar
  18. Dong Wang, Lei Zou, and Dongyan Zhao. 2014. g<sup>st</sup>-Store: An Engine for Large RDF Graph Integrating Spatio-temporal Information. In Proceedings of EDBT. 652--655.Google ScholarGoogle Scholar
  19. Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore: sextuple indexing for semantic web data management. PVLDB 1, 1 (2008), 1008--1019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. 2013. A Distributed Graph Engine for Web Scale RDF Data. PVLDB 6, 4 (2013), 265--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. 2013. EAGRE: Towards scalable I/O efficient SPARQL query evaluation on the cloud. In Proceedings of ICDE. 565--576. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient spatio-temporal RDF query processing in large dynamic knowledge bases

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SAC '19: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing
      April 2019
      2682 pages
      ISBN:9781450359337
      DOI:10.1145/3297280

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 April 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,650of6,669submissions,25%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader