skip to main content
research-article

Neural Importance Sampling

Published:10 October 2019Publication History
Skip Abstract Section

Abstract

We propose to use deep neural networks for generating samples in Monte Carlo integration. Our work is based on non-linear independent components estimation (NICE), which we extend in numerous ways to improve performance and enable its application to integration problems. First, we introduce piecewise-polynomial coupling transforms that greatly increase the modeling power of individual coupling layers. Second, we propose to preprocess the inputs of neural networks using one-blob encoding, which stimulates localization of computation and improves inference. Third, we derive a gradient-descent-based optimization for the Kullback-Leibler and the χ2 divergence for the specific application of Monte Carlo integration with unnormalized stochastic estimates of the target distribution. Our approach enables fast and accurate inference and efficient sample generation independently of the dimensionality of the integration domain. We show its benefits on generating natural images and in two applications to light-transport simulation: first, we demonstrate learning of joint path-sampling densities in the primary sample space and importance sampling of multi-dimensional path prefixes thereof. Second, we use our technique to extract conditional directional densities driven by the product of incident illumination and the BSDF in the rendering equation, and we leverage the densities for path guiding. In all applications, our approach yields on-par or higher performance than competing techniques at equal sample count.

Skip Supplemental Material Section

Supplemental Material

References

  1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org/.Google ScholarGoogle Scholar
  2. Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David Pfau, Tom Schaul, and Nando de Freitas. 2016. Learning to learn by gradient descent by gradient descent. arXiv:1606.04474 (June 2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Benedikt Bitterli. 2016. Rendering resources. Retrieved from https://benedikt-bitterli.me/resources/.Google ScholarGoogle Scholar
  4. Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018. Neural ordinary differential equations. arXiv:1806.07366 (June 2018).Google ScholarGoogle Scholar
  5. Yutian Chen, Matthew W. Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matt Botvinick, and Nando de Freitas. 2017. Learning to learn without gradient descent by gradient descent. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 748--756.Google ScholarGoogle Scholar
  6. Ken Dahm and Alexander Keller. 2018. Learning light transport the reinforced way. In Proceedings in Mathematics 8 Statistics Monte Carlo and Quasi-Monte Carlo Methods, Art B. Owen and Peter W. Glynn (Eds.). Vol. 241. Springer, 181--195.Google ScholarGoogle ScholarCross RefCross Ref
  7. Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. NICE: Non-linear independent components estimation. arXiv:1410.8516 (Oct. 2014).Google ScholarGoogle Scholar
  8. Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation using real NVP. arXiv:1605.08803 (March 2016).Google ScholarGoogle Scholar
  9. Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE: Masked autoencoder for distribution estimation. In International Conference on Machine Learning. 881--889.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proc. 13th International Conference on Artificial Intelligence and Statistics (May 13--15). JMLR.org, 249--256.Google ScholarGoogle Scholar
  11. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems. 2672--2680.Google ScholarGoogle Scholar
  12. Jerry Jinfeng Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary sample space path guiding. In Eurographics Symposium on Rendering—Experimental Ideas 8 Implementations, Wenzel Jakob and Toshiya Hachisuka (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  13. Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed metropolis light transport. ACM Trans. Graph. 33, 4, Article 100 (July 2014), 10 pages. DOI:https://doi.org/10.1145/2601097.2601138Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. David Money Harris and Sarah L. Harris. 2013. 3.4.2—State encodings. In Digital Design and Computer Architecture (2nd Ed.). Morgan Kaufmann, Boston, 129--131. DOI:https://doi.org/10.1016/B978-0-12-394424-5.00002-1Google ScholarGoogle Scholar
  15. Sebastian Herholz, Oskar Elek, Jens Schindel, Jaroslav Křivánek, and Hendrik P. A. Lensch. 2018. A unified manifold framework for efficient BRDF sampling based on parametric mixture models. In Eurographics Symposium on Rendering—Experimental Ideas 8 Implementations, Wenzel Jakob and Toshiya Hachisuka (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  16. Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016. Product importance sampling for light transport path guiding. Computer Graphics Forum (2016). DOI:https://doi.org/10.1111/cgf.12950Google ScholarGoogle Scholar
  17. Heinrich Hey and Werner Purgathofer. 2002. Importance sampling with hemispherical particle footprints. In Proceedings of the 18th Spring Conference on Computer Graphics (SCCG’02). ACM, 107--114. DOI:https://doi.org/10.1145/584458.584476Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville. 2018. Neural autoregressive flows. arXiv:1804.00779 (April 2018).Google ScholarGoogle Scholar
  19. Wenzel Jakob. 2010. Mitsuba renderer. Retrieved from http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  20. Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Rendering Techniques. Springer Vienna, Vienna, 326--335. DOI:https://doi.org/10.1007/978-3-7091-9430-0_31Google ScholarGoogle Scholar
  21. James T. Kajiya. 1986. The rendering equation. Computer Graphics 20 (1986), 143--150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3 (May 2002), 531--540. DOI:https://doi.org/10.1111/1467-8659.t01-1-00703Google ScholarGoogle ScholarCross RefCross Ref
  23. Alexander Keller and Ken Dahm. 2019. Integral equations and machine learning. Mathematics and Computers in Simulation 161 (2019), 2--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980 (June 2014).Google ScholarGoogle Scholar
  25. Diederik P. Kingma and Prafulla Dhariwal. 2018. Glow: Generative flow with invertible 1x1 convolutions. arXiv:1807.03039 (July 2018).Google ScholarGoogle Scholar
  26. Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. 2016. Improved variational inference with inverse autoregressive flow. In Advances in Neural Information Processing Systems. 4743--4751.Google ScholarGoogle Scholar
  27. Eric P. Lafortune and Yves D. Willems. 1995. A 5D tree to reduce the variance of Monte Carlo ray tracing. In Rendering Techniques’95 (Proc. of the 6th Eurographics Workshop on Rendering). 11--20. DOI:https://doi.org/10.1007/978-3-7091-9430-0_2Google ScholarGoogle Scholar
  28. Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning face attributes in the wild. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV’15). IEEE Computer Society, Washington, D.C., 3730--3738. DOI:https://doi.org/10.1109/ICCV.2015.425Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for efficient light-transport simulation. Comput. Graphics Forum 36, 4 (June 2017), 91--100. DOI:https://doi.org/10.1111/cgf.13227Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jacopo Pantaleoni and Eric Heitz. 2017. Notes on optimal approximations for importance sampling. arXiv:1707.08358 (July 2017).Google ScholarGoogle Scholar
  31. George Papamakarios, Iain Murray, and Theo Pavlakou. 2017. Masked autoregressive flow for density estimation. In Advances in Neural Information Processing Systems. 2338--2347.Google ScholarGoogle Scholar
  32. Vincent Pegoraro, Carson Brownlee, Peter S. Shirley, and Steven G. Parker. 2008a. Towards interactive global illumination effects via sequential Monte Carlo adaptation. In Proceedings of the 3rd IEEE Symposium on Interactive Ray Tracing. 107--114.Google ScholarGoogle Scholar
  33. Vincent Pegoraro, Ingo Wald, and Steven G. Parker. 2008b. Sequential Monte Carlo adaptation in low-anisotropy participating media. Comput. Graphics Forum 27, 4 (Sept. 2008), 1097--1104. DOI:https://doi.org/10.1111/j.1467-8659.2008.01247.xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  34. Danilo Rezende and Shakir Mohamed. 2015. Variational inference with normalizing flows. In International Conference on Machine Learning. 1530--1538.Google ScholarGoogle Scholar
  35. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6 (Dec. 2011). DOI:https://doi.org/10.1145/2024156.2024193Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Joshua Steinhurst and Anselmo Lastra. 2006. Global importance sampling of glossy surfaces using the photon map. IEEE Symposium on Interactive Ray Tracing (Sept. 2006), 133--138. DOI:https://doi.org/10.1109/RT.2006.280224Google ScholarGoogle ScholarCross RefCross Ref
  37. Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016a. Wavenet: A generative model for raw audio. arXiv:1609.03499 (Sept. 2016).Google ScholarGoogle Scholar
  38. Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016b. Pixel recurrent neural networks. In International Conference on Machine Learning. 1747--1756.Google ScholarGoogle Scholar
  39. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford, CA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Eric Veach and Leonidas J. Guibas. 1994. Bidirectional estimators for light transport. In EG Rendering Workshop.Google ScholarGoogle Scholar
  41. Eric Veach and Leonidas J. Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In Proc. SIGGRAPH. 419--428. DOI:https://doi.org/10.1145/218380.218498Google ScholarGoogle Scholar
  42. Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression for adaptive direct illumination sampling. ACM Trans. Graph. 37, 4 (Aug. 2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. 33, 4 (Aug. 2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Quan Zheng and Matthias Zwicker. 2018. Learning to importance sample in primary sample space. arXiv:1808.07840 (Sept. 2018).Google ScholarGoogle Scholar

Index Terms

  1. Neural Importance Sampling

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 38, Issue 5
              October 2019
              191 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/3341165
              Issue’s Table of Contents

              Copyright © 2019 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 10 October 2019
              • Accepted: 1 June 2019
              • Revised: 1 May 2019
              • Received: 1 September 2018
              Published in tog Volume 38, Issue 5

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format