skip to main content
10.1145/3345336.3345343acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbeaConference Proceedingsconference-collections
research-article

Cross-database Micro-Expression Recognition with Deep Convolutional Networks

Authors Info & Claims
Published:29 May 2019Publication History

ABSTRACT

Micro-expression recognition (MER) is attracting more and more interests as it has important applications for analyzing human behaviors. Since the recognition ability for individual datasets has been improved greatly, few works have been devoted to the cross database task of MER, which is more challenging for capturing the subtle changes of micro-expressions from different environments. In this paper, we employ an end-to-end deep model for learning the representation and classifier automatically. In the deep model, the recurrent convolutional layers are utilized to exploit the learning ability with the optical flow fields of micro-expression sequences, which are enhanced by a motion magnification procedure. To ease the influence of samples from different datasets (environments), we present three normalization methods (i.e., sample-wise, subject-wise and dataset-wise methods) to restrain the variations of samples. The experiments are performed on the cross database of MERC2019 challenge, and achieve comparative performance than the baseline method.

References

  1. A. K. Davison, C. Lansley, N. Costen, K. Tan, and M. H. Yap. SAMM: A spontaneous micro-facial movement dataset. IEEE Transactions on Affective Computing, 9(1):116--129, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. K. Davison, M. H. Yap, N. Costen, K. Tan, C. Lansley, and D. Leightley. Micro-facial movements: An investigation on spatio-temporal descriptors. In European Conference on Computer Vision (ECCV), pages 111--123, 2014.Google ScholarGoogle Scholar
  3. X. Huang, S. J. Wang, X. Liu, G. Zhao, X. Feng, and M. Pietikäinen. Discriminative spatiotemporal local binary pattern with revisited integral projection for spontaneous facial micro-expression recognition. IEEE Transactions on Affective Computing, PP(99):1--1, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. X. Huang, G. Zhao, X. Hong, W. Zheng, and M. Pietikainen. Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing, 175:564--578, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikainen. A spontaneous micro-expression database: Inducement, collection and baseline. In IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pages 1--6. IEEE, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. T. Liong, J. See, C. W. Phan, and K. S. Wong. Less is more: Micro-expression recognition from video using apex frame. Signal Processing: Image Communication, 62:82--92, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  7. Y. J. Liu, J. K. Zhang, W. J. Yan, S. J. Wang, G. Zhao, and X. Fu. A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Transactions on Affective Computing, 7(4):299--310, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. W. Merghani, A. K. Davison, and M. H. Yap. A review on facial micro-expressions analysis: Datasets, features and metrics. arXiv, 2018.Google ScholarGoogle Scholar
  9. T. Pfister, X. Li, G. Zhao, and M. Pietikainen. Recognising spontaneous facial micro-expressions. In International Conference on Computer Vision (ICCV), pages 1449--1456. IEEE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Takalkar, M. Xu, Q. Wu, and Z. Chaczko. A survey: facial micro-expression recognition. Multimedia Tools & Applications, 77(15):1930119325, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. A. Takalkar and M. Xu. Image based facial micro-expression recognition using deep learning on small datasets. In International Conference on Digital Image Computing: Techniques and Applications (DICTA), pages 1--7, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Vedaldi and K. Lenc. Matconvnet - convolutional neural networks for matlab. In ACM Multimedia, pages 689--692. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. J. Wang, S. Wu, X. Qian, J. Li, and X. Fu. A main directional maximal difference analysis for spotting facial movements from long-term videos. Neurocomputing, 230:382--389, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. J. Wang, W. J. Yan, X. Li, and G. Zhao. Micro-expression recognition using color spaces. IEEE Transactions on Image Processing, 24(12):6034, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman. Eulerian video magnification for revealing subtle changes in the world. ACM Transactions on Graphics, 31(4):13--15, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Z. Xia, X. Feng, X. Hong, and G. Zhao. Spontaneous facial micro-expression recognition via deep convolutional network. In International Conference on Image Processing Theory Tools & Applications, pages 235--240, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  17. Z. Xia, X. Feng, J. Peng, X. Peng, and G. Zhao. Spontaneous micro-expression spotting via geometric deformation modeling. Computer Vision & Image Understanding, 147:87--94, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Z. Xia, X. Hong, X. Gao, X. Feng, and G. Zhao. Spatiotemporal recurrent convolutional networks for recognizing spontaneous micro-expressions. IEEE transactions on Multimedia, Online, 2019.Google ScholarGoogle Scholar
  19. Z. Xia, J. Lin, and X. Feng. Trademark image retrieval via transformation-invariant deep hashing. Journal of Visual Communication and Image Representation, 59:108--116, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. Xu, J. Zhang, and J. Z. Wang. Microexpression identification and categorization using a facial dynamics map. IEEE Transactions on Affective Computing, 8(2):254--267, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W. J. Yan, X. Li, S. J. Wang, G. Zhao, Y. J. Liu, Y.-H. Chen, and X. Fu. CASME II: An improved spontaneous micro-expression database and the baseline evaluation. PloS one, 9(l):e86041, 2014.Google ScholarGoogle Scholar
  22. W. J. Yan, Q. Wu, J. Liang, Y.-H. Chen, and X. Fu. How fast are the leaked facial expressions: The duration of micro-expressions. Journal of Nonverbal Behavior, 37(4):217--230, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  23. M. H. Yap, J. See, X. Hong, and S.-J. Wang. Facial micro-expressions grand challenge 2018 summary. In IEEE Conference on Automatic Face & Gesture Recognition (FG), pages 675--678, 2018.Google ScholarGoogle Scholar
  24. Y. Zong, X. Huang, W. Zheng, Z. Cui, and G. Zhao. Learning from hierarchical spatiotemporal descriptors for micro-expression recognition. IEEE Transactions on Multimedia, PP(99):1--1, 2018.Google ScholarGoogle Scholar
  25. Y. Zong, W. Zheng, X. Huang, J. Shi, and G. Zhao. Domain regeneration for cross-database micro-expression recognition. IEEE Transactions on Image Processing, 27(99): 1--1, 2018.Google ScholarGoogle Scholar

Index Terms

  1. Cross-database Micro-Expression Recognition with Deep Convolutional Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICBEA 2019: Proceedings of the 2019 3rd International Conference on Biometric Engineering and Applications
        May 2019
        82 pages
        ISBN:9781450363051
        DOI:10.1145/3345336

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 May 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader