skip to main content
10.1145/3366174.3366183acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbspConference Proceedingsconference-collections
research-article

Enhancement Algorithms for Blinking Fluorescence Imaging

Authors Info & Claims
Published:15 January 2020Publication History

ABSTRACT

A probabilistic approach for super-resolution of blinking fluorescence microscopy was suggested. Its performance was compared with modern blinking fluorescence image enhancement algorithms, namely SOFI, MUSICAL and SPARCOM in different conditions. The comparison was performed using both synthetic and real experimental data.

References

  1. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. and Enderlein, J. 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences. 106, 52 (2009), 22287--22292. DOI= https://doi.org/10.1073/pnas.0907866106.Google ScholarGoogle ScholarCross RefCross Ref
  2. Mendel, J. 1991. Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proceedings of the IEEE. 79, 3 (1991), 278--305. DOI= https://doi.org/10.1109/5.75086.Google ScholarGoogle Scholar
  3. Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. and Weiss, S. 2010. Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI). Optics Express. 18, 18 (2010), 18875. DOI= https://doi.org/10.1364/oe.18.018875.Google ScholarGoogle ScholarCross RefCross Ref
  4. Solomon, O., Mutzafi, M., Segev, M. and Eldar, Y. 2018. Sparsity-based super-resolution microscopy from correlation information. Optics Express. 26, 14 (2018), 18238. DOI= https://doi.org/10.1364/OE.26.018238.Google ScholarGoogle ScholarCross RefCross Ref
  5. Agarwal, K. and Macháň, R. 2016. Multiple signal classification algorithm for super-resolution fluorescence microscopy. Nature Communications. 7, 1 (2016), 13752. DOI= https://doi.org/10.1038/ncomms13752.Google ScholarGoogle ScholarCross RefCross Ref
  6. Schmidt, R. 1986. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation. 34, 3 (1986), 276--280. DOI= https://doi.org/10.1109/TAP.1986.1143830.Google ScholarGoogle Scholar
  7. Cox, S., Rosten, E., Monypenny, J., Jovanovic-Talisman, T., Burnette, D., Lippincott-Schwartz, J., Jones, G. and Heintzmann, R. 2011. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nature Methods. 9, 2 (2011), 195--200. DOI= https://doi.org/10.1038/nmeth.1812.Google ScholarGoogle ScholarCross RefCross Ref
  8. Nehme, E., Weiss, L., Michaeli, T. and Shechtman, Y. 2018. Deep-STORM: Super-resolution single-molecule microscopy by deep learning. Optica. 5, 4 (2018), 458. DOI= https://doi.org/10.1364/OPTICA.5.000458.Google ScholarGoogle Scholar
  9. Li, Y., Xu, F., Zhang, F., Xu, P., Zhang, M., Fan, M., Li, L., Gao, X. and Han, R. 2018. DLBI: Deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy. Bioinformatics. 34, 13 (2018), i284--i294. DOI= https://doi.org/10.1093/bioinformatics/bty241.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dempster, A., Laird, N. and Rubin, D. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological). 39, 1 (1977), 1--22. DOI=https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.Google ScholarGoogle Scholar
  11. Bishop, C. 2006. Pattern recognition and machine learning. Springer.Google ScholarGoogle Scholar
  12. Richardson, W. 1972. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America. 62, 1 (1972), 55. DOI= https://doi.org/10.1364/JOSA.62.000055.Google ScholarGoogle Scholar
  13. Lucy, L. 1974. An iterative technique for the rectification of observed distributions. The Astronomical Journal. 79, (1974), 745. DOI= https://doi.org/10.1086/111605.Google ScholarGoogle ScholarCross RefCross Ref
  14. Sage, D., Kirshner, H., Pengo, T., Stuurman, N., Min, J., Manley, S. and Unser, M. 2015. Quantitative evaluation of software packages for single-molecule localization microscopy. Nature Methods. 12, 8 (2015), 717--724. DOI= https://doi.org/10.1038/nmeth.3442.Google ScholarGoogle ScholarCross RefCross Ref
  15. Sage, D. et al. 2019. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nature Methods. 16, 5 (2019), 387--395. DOI= https://doi.org/10.1038/s41592-019-0364-4.Google ScholarGoogle ScholarCross RefCross Ref
  16. Girsault, A., Lukes, T., Sharipov, A., Geissbuehler, S., Leutenegger, M., Vandenberg, W., Dedecker, P., Hofkens, J. and Lasser, T. 2016. SOFI Simulation Tool: A software package for simulating and testing Super-Resolution Optical Fluctuation Imaging. PLOS ONE. 11, 9 (2016), e0161602. DOI= https://doi.org/10.1371/journal.pone.0161602.Google ScholarGoogle ScholarCross RefCross Ref
  17. Weisshart, K. 2014. The basic principle of Airyscanning. Technology Note. Zeiss.Google ScholarGoogle Scholar
  18. Uno, S., Kamiya, M., Yoshihara, T., Sugawara, K., Okabe, K., Tarhan, M., Fujita, H., Funatsu, T., Okada, Y., Tobita, S. and Urano, Y. 2014. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nature Chemistry. 6, 8 (2014), 681--689. DOI= https://doi.org/10.1038/nchem.2002.Google ScholarGoogle ScholarCross RefCross Ref
  19. Sheppard, C., Mehta, S. and Heintzmann, R. 2013. Superresolution by image scanning microscopy using pixel reassignment. Optics Letters. 38, 15 (2013), 2889. DOI= https://doi.org/10.1364/OL.38.002889.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Enhancement Algorithms for Blinking Fluorescence Imaging

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBSP '19: Proceedings of the 2019 4th International Conference on Biomedical Imaging, Signal Processing
      October 2019
      108 pages
      ISBN:9781450372954
      DOI:10.1145/3366174

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 January 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader