skip to main content
survey

Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

Published:22 July 2020Publication History
Skip Abstract Section

Abstract

The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled cyber-physical systems associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. Fog computing, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed and heterogeneous, and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing.

References

  1. M. Aazam and E. Huh. 2015. Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT. In Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications. 687--694.Google ScholarGoogle Scholar
  2. Mohammad Aazam, Sherali Zeadally, and Khaled A. Harras. 2018. Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities. Future Generation Computer Systems 87 (2018), 278--289.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sadam Hussain Abbasi, Nadeem Javaid, Muhammad Hassaan Ashraf, Mubashar Mehmood, Maria Naeem, and Mubariz Rehman. 2019. Load stabilizing in fog computing environment using load balancing algorithm. In Advances on Broadband and Wireless Computing, Communication and Applications. Springer International Publishing, Cham, Switzerland, 737--750.Google ScholarGoogle Scholar
  4. Eman AbdElhalim, Marwa Obayya, and Sherif Kishk. 2019. Distributed fog-to-cloud computing system: A minority game approach. Concurrency and Computation: Practice and Experience 31, 15 (2019), e5162.Google ScholarGoogle ScholarCross RefCross Ref
  5. Mainak Adhikari and Hemant Gianey. 2019. Energy efficient offloading strategy in fog-cloud environment for IoT applications. Internet of Things 6 (2019), 100053.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. Adhikari, M. Mukherjee, and S. N. Srirama. 2019. DPTO: A deadline and priority-aware task offloading in fog computing framework leveraging multi-level feedback queueing. IEEE Internet of Things Journal. Accepted. DOI:https://doi.org/10.1109/JIOT.2019.2946426Google ScholarGoogle Scholar
  7. Mahbuba Afrin, Jiong Jin, and Ashfaqur Rahman. 2018. Energy-delay co-optimization of resource allocation for robotic services in cloudlet infrastructure. In Proceedings of the International Conference on Service-Oriented Computing. 295--303.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mahbuba Afrin, Jiong Jin, Ashfaqur Rahman, Yu-Chu Tian, and Ambarish Kulkarni. 2019. Multi-objective resource allocation for edge cloud based robotic workflow in smart factory. Future Generation Computer Systems 97 (2019), 119--130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Afrin, M. R. Mahmud, and M. A. Razzaque. 2015. Real time detection of speed breakers and warning system for on-road drivers. In Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE’15). 495--498.Google ScholarGoogle Scholar
  10. Mahbuba Afrin, Md Razzaque, Iffat Anjum, Mohammad Mehedi Hassan, and Atif Alamri. 2017. Tradeoff between user quality-of-experience and service provider profit in 5G cloud radio access network. Sustainability 9, 11 (2017), 2127.Google ScholarGoogle ScholarCross RefCross Ref
  11. Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh, Mung Chiang, and Prateek Mittal. 2018. Adaptive fog-based output security for augmented reality. In Proceedings of the 2018 Morning Workshop on Virtual Reality and Augmented Reality Network (VR/AR Network’18). ACM, New York, NY, 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Al-Khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and Y. Jararweh. 2019. Improving fog computing performance via fog-2-fog collaboration. Future Generation Computer Systems 100 (2019), 260--280.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M. Naeem. 2018. Joint cloudlet selection and latency minimization in fog networks. IEEE Transactions on Industrial Informatics 14, 9 (Sept. 2018), 4055--4063.Google ScholarGoogle ScholarCross RefCross Ref
  14. Adam A. Alli and Muhammad Mahbub Alam. 2019. SecOFF-FCIoT: Machine learning based secure offloading in fog-cloud of things for smart city applications. Internet of Things 7 (2019), 100070.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Alnoman and A. Anpalagan. 2018. A dynamic priority service provision scheme for delay-sensitive applications in fog computing. In Proceedings of the 2018 29th Biennial Symposium on Communications (BSC’18). IEEE, Los Alamitos, CA, 1--5.Google ScholarGoogle Scholar
  16. A. Alrawais, A. Alhothaily, C. Hu, X. Xing, and X. Cheng. 2017. An attribute-based encryption scheme to secure fog communications. IEEE Access 5 (2017), 9131--9138.Google ScholarGoogle ScholarCross RefCross Ref
  17. Cosimo Anglano, Massimo Canonico, Paolo Castagno, Marco Guazzone, and Matteo Sereno. 2019b. Profit-aware coalition formation in fog computing providers: A game-theoretic approach. Concurrency and Computation: Practice and Experience. In Press.Google ScholarGoogle Scholar
  18. Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2019a. Online user-driven task scheduling for FemtoClouds. In Proceedings of the 2019 4th International Conference on Fog and Mobile Edge Computing (FMEC’19). 5--12.Google ScholarGoogle ScholarCross RefCross Ref
  19. Arman Anzanpour, Humayun Rashid, Amir M. Rahmani, Axel Jantsch, Nikil Dutt, and Pasi Liljeberg. 2019. Energy-efficient and reliable wearable Internet-of-Things through fog-assisted dynamic goal management. Procedia Computer Science 151 (2019), 493--500.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. R. Arkian, A. Diyanat, and A. Pourkhalili. 2017. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications. Journal of Network and Computer Applications 82 (2017), 152--165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Deeksha Arya and Mayank Dave. 2017. Priority based service broker policy for fog computing environment. In Advanced Informatics for Computing Research. Springer Singapore, Singapore, 84--93.Google ScholarGoogle Scholar
  22. N. Auluck, A. Azim, and K. Fizza. 2019. Improving the schedulability of real-time tasks using fog computing. IEEE Transactions on Services Computing. Early Access. September 27, 2019. DOI:https://doi.org/10.1109/TSC.2019.2944360Google ScholarGoogle Scholar
  23. M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou. 2019. Adaptive resource allocation for computation offloading: A control-theoretic approach. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 23, 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy. 2017. Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study. IEEE Access 5 (2017), 9882--9910.Google ScholarGoogle ScholarCross RefCross Ref
  25. R. K. Barik, A. C. Dubey, A. Tripathi, T. Pratik, S. Sasane, R. K. Lenka, H. Dubey, K. Mankodiya, and V. Kumar. 2018. Mist data: Leveraging mist computing for secure and scalable architecture for smart and connected health. Procedia Computer Science 125 (2018), 647--653.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sudheer Kumar Battula, Saurabh Garg, Ranesh Kumar Naha, Parimala Thulasiraman, and Ruppa Thulasiram. 2019. A micro-level compensation-based cost model for resource allocation in a fog environment. Sensors 19, 13 (2019), 2954.Google ScholarGoogle ScholarCross RefCross Ref
  27. Ranjit Kumar Behera, K. Hemant Kumar Reddy, and Diptendu Sinha Roy. 2020. A novel context migration model for fog-enabled cross-vertical IoT applications. In Proceedings of the International Conference on Innovative Computing and Communications. 287--295.Google ScholarGoogle Scholar
  28. Paolo Bellavista, Javier Berrocal, Antonio Corradi, Sajal K. Das, Luca Foschini, and Alessandro Zanni. 2019. A survey on fog computing for the Internet of Things. Pervasive and Mobile Computing 52 (2019), 71--99.Google ScholarGoogle ScholarCross RefCross Ref
  29. Paolo Bellavista, Antonio Corradi, Luca Foschini, and Domenico Scotece. 2019. Differentiated service/data migration for edge services leveraging container characteristics. IEEE Access 7 (2019), 139746--139758.Google ScholarGoogle ScholarCross RefCross Ref
  30. L. Belli, S. Cirani, L. Davoli, A. Gorrieri, M. Mancin, M. Picone, and G. Ferrari. 2015. Design and deployment of an IoT application-oriented testbed. Computer 48, 9 (Sept. 2015), 32--40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Amira Rayane Benamer, Hana Teyeb, and Nejib Ben Hadj-Alouane. 2018. Latency-aware placement heuristic in fog computing environment. In On the Move to Meaningful Internet Systems. OTM 2018. Lecture Notes in Computer Science, Vol. 11230. Springer, 241--257.Google ScholarGoogle Scholar
  32. M. A. Benblidia, B. Brik, L. Merghem-Boulahia, and M. Esseghir. 2019. Ranking fog nodes for tasks scheduling in fog-cloud environments: A fuzzy logic approach. In Proceedings of the 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC’19). 1451--1457.Google ScholarGoogle Scholar
  33. Munish Bhatia, Sandeep K. Sood, and Simranpreet Kaur. 2019. Quantum-based predictive fog scheduler for IoT applications. Computers in Industry 111 (2019), 51--67.Google ScholarGoogle ScholarCross RefCross Ref
  34. Huynh Thi Thanh Binh, Tran The Anh, Do Bao Son, Pham Anh Duc, and Binh Minh Nguyen. 2018. An evolutionary algorithm for solving task scheduling problem in cloud-fog computing environment. In Proceedings of the 9th International Symposium on Information and Communication Technology (SoICT’18). ACM, New York, NY, 397--404.Google ScholarGoogle Scholar
  35. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. 2012. Fog computing and its role in the Internet of Things. In Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing. ACM, New York, NY, 13--16.Google ScholarGoogle Scholar
  36. A. Brogi and S. Forti. 2017. QoS-aware deployment of IoT applications through the fog. IEEE Internet of Things Journal 4, 5 (Oct. 2017), 1185--1192.Google ScholarGoogle ScholarCross RefCross Ref
  37. Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 6 (2009), 599--616.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Danilo Charântola, Alexandre C. Mestre, Rafael Zane, and Luiz F. Bittencourt. 2019. Component-based scheduling for fog computing. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC’19 Companion). ACM, New York, NY, 3--8.Google ScholarGoogle Scholar
  39. Min Chen, Wei Li, Giancarlo Fortino, Yixue Hao, Long Hu, and Iztok Humar. 2019. A dynamic service migration mechanism in edge cognitive computing. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 30, 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Kitazawa. 2018. FogFlow: Easy programming of IoT services over cloud and edges for smart cities. IEEE Internet of Things Journal 5, 2 (April 2018), 696--707.Google ScholarGoogle ScholarCross RefCross Ref
  41. Francesco Chiti, Romano Fantacci, and Benedetta Picano. 2019. A matching game for tasks offloading in integrated edge-fog computing systems. Transactions on Emerging Telecommunications Technologies 31, 2 (2019), e3718.Google ScholarGoogle Scholar
  42. Tejaswini Choudhari, Melody Moh, and Teng-Sheng Moh. 2018. Prioritized task scheduling in fog computing. In Proceedings of the ACMSE 2018 Conference (ACMSE’18). ACM, New York, NY, Article 22, 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Abdullahi Chowdhury, Gour Karmakar, and Joarder Kamruzzaman. 2019. The co-evolution of cloud and IoT applications: Recent and future trends. In Handbook of Research on the IoT, Cloud Computing, and Wireless Network Optimization. IGI Global, 213--234.Google ScholarGoogle Scholar
  44. Federico Concone, Giuseppe Lo Re, and Marco Morana. 2019. A fog-based application for human activity recognition using personal smart devices. ACM Transactions on Internet Technology 19, 2 (March 2019), Article 20, 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. G. Cristescu, R. Dobrescu, O. Chenaru, and G. Florea. 2019. DEW: A new edge computing component for distributed dynamic networks. In Proceedings of the 2019 22nd International Conference on Control Systems and Computer Science (CSCS’19). 547--551.Google ScholarGoogle Scholar
  46. L. Dang, M. Dong, K. Ota, J. Wu, J. Li, and G. Li. 2018. Resource-efficient secure data sharing for information centric e-health system using fog computing. In Proceedings of the 2018 IEEE International Conference on Communications (ICC’18). 1--6.Google ScholarGoogle Scholar
  47. A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya. 2016. Fog computing: Principles, architectures, and applications. In Internet of Things: Principles and Paradigms. Morgan Kaufmann, 61--75. DOI:https://doi.org/10.1016/B978-0-12-805395-9.00004-6Google ScholarGoogle Scholar
  48. Jean Lucas de Souza Toniolli and Brigitte Jaumard. 2019. Resource allocation for multiple workflows in cloud-fog computing systems. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC’19 Companion). ACM, New York, NY, 77--84.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. S. Dehnavi, H. R. Faragardi, M. Kargahi, and T. Fahringer. 2019. A reliability-aware resource provisioning scheme for real-time industrial applications in a Fog-integrated smart factory. Microprocessors and Microsystems 70 (2019), 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  50. R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang. 2016. Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet of Things Journal 3, 6 (Dec. 2016), 1171--1181.Google ScholarGoogle Scholar
  51. Ruimiao Ding, Xuejun Li, Xiao Liu, and Jia Xu. 2019. A cost-effective time-constrained multi-workflow scheduling strategy in fog computing. In Service-Oriented Computing—ICSOC 2018 Workshops. Lecture Notes in Computer Science, Vol. 11434. Springer, 194--207.Google ScholarGoogle ScholarCross RefCross Ref
  52. T. Djemai, P. Stolf, T. Monteil, and J. Pierson. 2019. A discrete particle swarm optimization approach for energy-efficient IoT services placement over fog infrastructures. In Proceedings of the 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC’19). 32--40.Google ScholarGoogle Scholar
  53. J. Du, L. Zhao, J. Feng, and X. Chu. 2018. Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Transactions on Communications 66, 4 (April 2018), 1594--1608.Google ScholarGoogle ScholarCross RefCross Ref
  54. Mohammed S. Elbamby, Mehdi Bennis, Walid Saad, Matti Latva-Aho, and Choong Seon Hong. 2018. Proactive edge computing in fog networks with latency and reliability guarantees. EURASIP Journal on Wireless Communications and Networking 2018, 1 (Aug. 2018), 209.Google ScholarGoogle ScholarCross RefCross Ref
  55. Olamilekan Fadahunsi and Muthucumaru Maheswaran. 2019. Locality sensitive request distribution for fog and cloud servers. Service Oriented Computing and Applications 13, 2 (June 2019), 127--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. A. J. Fahs and G. Pierre. 2019. Proximity-aware traffic routing in distributed fog computing platforms. In Proceedings of the 2019 19th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGRID’19). 478--487.Google ScholarGoogle Scholar
  57. J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam. 2017. Deadline-aware task scheduling in a tiered IoT infrastructure. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM’17). 1--7.Google ScholarGoogle Scholar
  58. Weidong Fang, Wuxiong Zhang, Wei Chen, Yang Liu, and Chaogang Tang. 2019. TMSRS: Trust management-based secure routing scheme in industrial wireless sensor network with fog computing. Wireless Networks 26 (Sept. 2019), 3169--3182.Google ScholarGoogle Scholar
  59. Peter Farhat, Hani Sami, and Azzam Mourad. 2019. Reinforcement R-learning model for time scheduling of on-demand fog placement. Journal of Supercomputing 76 (Oct. 2019), 388--410.Google ScholarGoogle Scholar
  60. C. Fiandrino, N. Allio, D. Kliazovich, P. Giaccone, and P. Bouvry. 2019. Profiling performance of application partitioning for wearable devices in mobile cloud and fog computing. IEEE Access 7 (2019), 12156--12166.Google ScholarGoogle ScholarCross RefCross Ref
  61. Sonja Filiposka, Anastas Mishev, and Katja Gilly. 2019. Mobile-aware dynamic resource management for edge computing. Transactions on Emerging Telecommunications Technologies 30, 6 (2019), e3626.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. K. Fizza, N. Auluck, O. Rana, and L. Bittencourt. 2018. PASHE: Privacy aware scheduling in a heterogeneous fog environment. In Proceedings of the 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud’18). 333--340.Google ScholarGoogle Scholar
  63. Ahmed A. A. Gad-Elrab and Amin Y. Noaman. 2020. A two-tier bipartite graph task allocation approach based on fuzzy clustering in cloud--fog environment. Future Generation Computer Systems 103 (2020), 79--90.Google ScholarGoogle ScholarCross RefCross Ref
  64. Pegah Gazori, Dadmehr Rahbari, and Mohsen Nickray. 2019. Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach. Future Generation Computer Systems 110 (2019), 1098--1115. DOI:https://doi.org/10.1016/j.future.2019.09.060Google ScholarGoogle ScholarCross RefCross Ref
  65. Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. 2019. Resource management approaches in fog computing: A comprehensive review. Journal of Grid Computing 18 (2019), 1--42.Google ScholarGoogle ScholarCross RefCross Ref
  66. S. Ghosh, A. Mukherjee, S. K. Ghosh, and R. Buyya. 2019. Mobi-IoST: Mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Transactions on Network Science and Engineering. Early Access. September 16, 2019. DOI:https://doi.org/10.1109/TNSE.2019.2941754Google ScholarGoogle Scholar
  67. Nam Ky Giang, Rodger Lea, and Victor C. M. Leung. 2020. Developing applications in large scale, dynamic fog computing: A case study. Software: Practice and Experience 50, 5 (2020), 519--532. DOI:https://doi.org/10.1002/spe.2695Google ScholarGoogle ScholarCross RefCross Ref
  68. Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya. 2019. A fog-driven dynamic resource allocation technique in ultra dense femtocell networks. Journal of Network and Computer Applications 145, 1 (2019), 102407.Google ScholarGoogle ScholarCross RefCross Ref
  69. Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems 29, 7 (2013), 1645--1660.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Carlos Guerrero, Isaac Lera, and Carlos Juiz. 2019. A lightweight decentralized service placement policy for performance optimization in fog computing. Journal of Ambient Intelligence and Humanized Computing 10, 6 (June 2019), 2435--2452.Google ScholarGoogle ScholarCross RefCross Ref
  71. M. A. Hassan, M. Xiao, Q. Wei, and S. Chen. 2015. Help your mobile applications with fog computing. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops’15). 1--6.Google ScholarGoogle Scholar
  72. J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang. 2018. Multitier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet of Things Journal 5, 2 (April 2018), 677--686.Google ScholarGoogle ScholarCross RefCross Ref
  73. Xiang He, Zhiying Tu, Xiaofei Xu, and Zhongjie Wang. 2019. Re-deploying microservices in edge and cloud environment for the optimization of user-perceived service quality. In Service-Oriented Computing, S. Yangui, I. B. Rodriguez, K. Drira, and Z. Tari (Eds.). Springer International Publishing, Cham, Switzerland, 555--560.Google ScholarGoogle Scholar
  74. Cheol-Ho Hong and Blesson Varghese. 2018. Resource management in fog/edge computing: A survey. arXiv:1810.00305. http://arxiv.org/abs/1810.00305Google ScholarGoogle Scholar
  75. Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu. 2017. Survey on fog computing: Architecture, key technologies, applications and open issues. Journal of Network and Computer Applications 98 (2017), 27--42.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. C. Huang and K. Xu. 2016. Reliable realtime streaming in vehicular cloud-fog computing networks. In Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC’16). 1--6.Google ScholarGoogle Scholar
  77. Tiansheng Huang, Weiwei Lin, Yin Li, LiGang He, and ShaoLiang Peng. 2019. A latency-aware multiple data replicas placement strategy for fog computing. Journal of Signal Processing Systems 91, 10 (Oct. 2019), 1191--1204.Google ScholarGoogle ScholarCross RefCross Ref
  78. S. Imai, C. A. Varela, and S. Patterson. 2018. A performance study of geo-distributed IoT data aggregation for fog computing. In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion. 278--283.Google ScholarGoogle Scholar
  79. IoT for All. 2018. The Big Three Make a Play for the Fog. Retrieved April 8, 2020 from https://www.iotforall.com/big-three-make-play-fog/.Google ScholarGoogle Scholar
  80. Bushra Jamil, Mohammad Shojafar, Israr Ahmed, Atta Ullah, Kashif Munir, and Humaira Ijaz. 2019. A job scheduling algorithm for delay and performance optimization in fog computing. Concurrency and Computation: Practice and Experience 32, 7 (2019), e5581. DOI:https://doi.org/10.1002/cpe.5581Google ScholarGoogle Scholar
  81. T. Jeong, J. Chung, J. W. Hong, and S. Ha. 2017. Towards a distributed computing framework for Fog. In Proceedings of the 2017 IEEE Fog World Congress (FWC’17). 1--6.Google ScholarGoogle Scholar
  82. Y. Jiang, Y. Chen, S. Yang, and C. Wu. 2019. Energy-efficient task offloading for time-sensitive applications in fog computing. IEEE Systems Journal 13, 3 (Sept. 2019), 2930--2941.Google ScholarGoogle ScholarCross RefCross Ref
  83. S. Josilo and G. Dan. 2019. Decentralized algorithm for randomized task allocation in fog computing systems. IEEE/ACM Transactions on Networking 27, 1 (Feb. 2019), 85--97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Muhammad Babar Kamal, Nadeem Javaid, Syed Aon Ali Naqvi, Hanan Butt, Talha Saif, and Muhammad Daud Kamal. 2019. Heuristic min-conflicts optimizing technique for load balancing on fog computing. In Advances in Intelligent Networking and Collaborative Systems, F. Xhafa, L. Barolli, and M.Greguš (Eds.). Springer International Publishing, Cham, Switzerland, 207--219.Google ScholarGoogle Scholar
  85. A. Karamoozian, A. Hafid, and E. M. Aboulhamid. 2019. On the fog-cloud cooperation: How fog computing can address latency concerns of IoT applications. In Proceedings of the 4th International Conference on Fog and Mobile Edge Computing. 166--172.Google ScholarGoogle Scholar
  86. Firat Karatas and Ibrahim Korpeoglu. 2019. Fog-based data distribution service (F-DAD) for Internet of Things (IoT) applications. Future Generation Computer Systems 93 (2019), 156--169.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. P. Kayal and J. Liebeherr. 2019. Autonomic service placement in fog computing. In Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM’19). 1--9.Google ScholarGoogle Scholar
  88. Bongjun Kim, Seonyeong Heo, Gyeongmin Lee, Seungbin Song, Jong Kim, and Hanjun Kim. 2019. Spinal code: Automatic code extraction for near-user computation in fogs. In Proceedings of the 28th International Conference on Compiler Construction (CC’19). ACM, New York, NY, 87--98.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Won-Suk Kim and Sang-Hwa Chung. 2018. User incentive model and its optimization scheme in user-participatory fog computing environment. Computer Networks 145 (2018), 76--88.Google ScholarGoogle ScholarCross RefCross Ref
  90. Guenter I. Klas. 2015. Fog computing and mobile edge cloud gain momentum Open Fog Consortium, ETSI MEC and cloudlets. Retrieved 8 April, 2020 from https://yucianga.info/?p=938.Google ScholarGoogle Scholar
  91. Frank Alexander Kraemer, Anders Eivind Braten, Nattachart Tamkittikhun, and David Palma. 2017. Fog computing in healthcare—A review and discussion. IEEE Access 5 (2017), 9206--9222.Google ScholarGoogle ScholarCross RefCross Ref
  92. G. Lee, W. Saad, and M. Bennis. 2019. An online optimization framework for distributed fog network formation with minimal latency. IEEE Transactions on Wireless Communications 18, 4 (April 2019), 2244--2258.Google ScholarGoogle ScholarCross RefCross Ref
  93. I. Lera, C. Guerrero, and C. Juiz. 2019. Availability-aware service placement policy in fog computing based on graph partitions. IEEE Internet of Things Journal 6, 2 (April 2019), 3641--3651.Google ScholarGoogle ScholarCross RefCross Ref
  94. Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. 2018a. Edge-oriented computing paradigms: A survey on architecture design and system management. ACM Computing Surveys 51, 2 (2018), 39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Changlong Li, Hang Zhuang, Qingfeng Wang, and Xuehai Zhou. 2018b. SSLB: Self-similarity-based load balancing for large-scale fog computing. Arabian Journal for Science and Engineering 43, 12 (Dec. 2018), 7487--7498.Google ScholarGoogle ScholarCross RefCross Ref
  96. Guangshun Li, Jiahe Yan, Lu Chen, Junhua Wu, Qingyan Lin, and Ying Zhang. 2019c. Energy consumption optimization with a delay threshold in cloud-fog cooperation computing. IEEE Access 7 (2019), 159688--159697.Google ScholarGoogle ScholarCross RefCross Ref
  97. He Li, Kaoru Ota, and Mianxiong Dong. 2019b. Deep reinforcement scheduling for mobile crowdsensing in fog computing. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 21, 18 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Lei Li, Quansheng Guan, Lianwen Jin, and Mian Guo. 2019a. Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration time in a fog queueing system. IEEE Access 7 (2019), 9912--9925.Google ScholarGoogle ScholarCross RefCross Ref
  99. Songze Li, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. 2017. Coding for distributed fog computing. IEEE Communications Magazine 55, 4 (2017), 34--40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Liqing Liu, Zheng Chang, Xijuan Guo, and T. Ristaniemi. 2017. Multi-objective optimization for computation offloading in mobile-edge computing. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC’17). 832--837.Google ScholarGoogle Scholar
  101. Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao. 2019. DATS: Dispersive stable task scheduling in heterogeneous fog networks. IEEE Internet of Things Journal 6, 2 (April 2019), 3423--3436.Google ScholarGoogle Scholar
  102. J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, and H. Luo. 2019. Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT. Future Generation Computer Systems 97 (2019), 50--60.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu. 2013. Reliability in the utility computing era: Towards reliable Fog computing. In Proceedings of the 2013 20th International Conference on Systems, Signals, and Image Processing (IWSSIP’13). 43--46.Google ScholarGoogle Scholar
  104. Mukhtar M. E. Mahmoud, Joel J. P. C. Rodrigues, Kashif Saleem, Jalal Al-Muhtadi, Neeraj Kumar, and Valery Korotaev. 2018. Towards energy-aware fog-enabled cloud of things for healthcare. Computers 8 Electrical Engineering 67 (2018), 58--69.Google ScholarGoogle Scholar
  105. Md. Redowan Mahmud, Mahbuba Afrin, Md. Abdur Razzaque, Mohammad Mehedi Hassan, Abdulhameed Alelaiwi, and Majed Alrubaian. 2016. Maximizing quality of experience through context-aware mobile application scheduling in cloudlet infrastructure. Software: Practice and Experience 46, 11 (2016), 1525--1545.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Redowan Mahmud, Fernando Luiz Koch, and Rajkumar Buyya. 2018a. Cloud-fog interoperability in IoT-enabled healthcare solutions. In Proceedings of the 19th International Conference on Distributed Computing and Networking (ICDCN’18). ACM, New York, NY, Article 32, 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018b. Fog computing: A taxonomy, survey and future directions. In Internet of Everything. Springer, 103--130.Google ScholarGoogle Scholar
  108. Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2018c. Latency-aware application module management for fog computing environments. ACM Transactions on Internet Technology 19, 1 (Nov. 2018), Article 9, 21 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2019a. Edge affinity-based management of applications in fog computing environments. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing (UCC’19). ACM, New York, NY, 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2019b. Quality of experience (QoE)-aware placement of applications in Fog computing environments. Journal of Parallel and Distributed Computing 132 (2019), 190--203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2020. Profit-aware application placement for integrated Fog--Cloud computing environments. Journal of Parallel and Distributed Computing 135 (2020), 177--190.Google ScholarGoogle ScholarCross RefCross Ref
  112. R. Mahmud, A. N. Toosi, K. Rao, and R. Buyya. 2019. Context-aware placement of Industry 4.0 applications in fog computing environments. IEEE Transactions on Industrial Informatics. Early Access. November 8, 2019.Google ScholarGoogle Scholar
  113. Mirjana Maksimović. 2018. Implementation of fog computing in IoT-based healthcare system. JITA—Journal of Information Technology and Applications 14, 2 (2018), 100--107.Google ScholarGoogle Scholar
  114. B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades. 2015. The power of models: Modeling power consumption for IoT devices. IEEE Sensors Journal 15, 10 (Oct. 2015), 5777--5789.Google ScholarGoogle ScholarCross RefCross Ref
  115. Jakob Mass, Chii Chang, and Satish Narayana Srirama. 2018. Context-aware edge process management for mobile thing-to-fog environment. In Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings (ECSA’18). ACM, New York, NY, Article 44, 7 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Houssemeddine Mazouzi, Nadjib Achir, and Khaled Boussetta. 2019. DM2-ECOP: An efficient computation offloading policy for multi-user multi-cloudlet mobile edge computing environment. ACM Transactions on Internet Technology 19, 2 (April 2019), Article 24, 24 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. S. Meixner, D. Schall, F. Li, V. Karagiannis, S. Schulte, and K. Plakidas. 2019. Automatic application placement and adaptation in cloud-edge environments. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’19). 1001--1008.Google ScholarGoogle Scholar
  118. Eduard Melnik, Anna Klimenko, and Vladislav Klimenko. 2019. A recovery technique for the fog-computing-based information and control systems. In Intelligent Systems in Cybernetics and Automation Control Theory, R. Silhavy, P. Silhavy, and Z. Prokopova (Eds.). Springer International Publishing, Cham, Switzerland, 216--227.Google ScholarGoogle Scholar
  119. Moumita Mishra, Sayan Kumar Roy, Anwesha Mukherjee, Debashis De, Soumya K. Ghosh, and Rajkumar Buyya. 2019. An energy-aware multi-sensor geo-fog paradigm for mission critical applications. Journal of Ambient Intelligence and Humanized Computing. Early Access. September 12, 2019.Google ScholarGoogle Scholar
  120. S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, B. Sahoo, and E. Dutkiewicz. 2018. Sustainable service allocation using a metaheuristic technique in a fog server for industrial applications. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4497--4506.Google ScholarGoogle ScholarCross RefCross Ref
  121. N. Mohamed, J. Al-Jaroodi, and I. Jawhar. 2019. Towards fault tolerant fog computing for IoT-based smart city applications. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC’19). 0752--0757.Google ScholarGoogle Scholar
  122. C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad, N. T. Jahromi, and R. H. Glitho. 2019. Application component placement in NFV-based hybrid cloud/fog systems with mobile fog nodes. IEEE Journal on Selected Areas in Communications 37, 5 (May 2019), 1130--1143.Google ScholarGoogle ScholarCross RefCross Ref
  123. Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J. Morrow, and Paul A. Polakos. 2017. A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys 8 Tutorials 20, 1 (2017), 416--464.Google ScholarGoogle Scholar
  124. M. Mtshali, H. Kobo, S. Dlamini, M. Adigun, and P. Mudali. 2019. Multi-objective optimization approach for task scheduling in fog computing. In Proceedings of the International Conference on Advances in Big Data, Computing, and Data Communication Systems. 1--6.Google ScholarGoogle Scholar
  125. Mithun Mukherjee, Lei Shu, and Di Wang. 2018. Survey of fog computing: Fundamental, network applications, and research challenges. IEEE Communications Surveys 8 Tutorials 20, 3 (2018), 1826--1857.Google ScholarGoogle Scholar
  126. Mohammed Islam NAAS, Laurent Lemarchand, Jalil Boukhobza, and Philippe Raipin. 2018. A graph partitioning-based heuristic for runtime IoT data placement strategies in a fog infrastructure. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC’18). ACM, New York, NY, 767--774.Google ScholarGoogle Scholar
  127. Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Longxiang Gao, Yong Xiang, and Rajiv Ranjan. 2018. Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access 6 (2018), 47980--48009.Google ScholarGoogle ScholarCross RefCross Ref
  128. Biji Nair and Mary Saira Bhanu Somasundaram. 2019. Overload prediction and avoidance for maintaining optimal working condition in a fog node. Computers 8 Electrical Engineering 77 (2019), 147--162.Google ScholarGoogle Scholar
  129. Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, Y. Dou, and A. Y. Zomaya. 2017. Adaptive energy-aware computation offloading for cloud of things systems. IEEE Access 5 (2017), 23947--23957.Google ScholarGoogle ScholarCross RefCross Ref
  130. Mansoor Nasir, Khan Muhammad, Jaime Lloret, Arun Kumar Sangaiah, and Muhammad Sajjad. 2019. Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities. Journal on Parallel and Distributed Computing 126 (2019), 161--170.Google ScholarGoogle ScholarCross RefCross Ref
  131. Shubha Brata Nath, Harshit Gupta, Sandip Chakraborty, and Soumya K. Ghosh. 2018. A survey of fog computing and communication: Current researches and future directions. arXiv:1804.04365. arxiv:1804.04365 http://arxiv.org/abs/1804.04365Google ScholarGoogle Scholar
  132. T. Nazar, N. Javaid, M. Waheed, A. Fatima, H. Bano, and N. Ahmed. 2019. Modified shortest job first for load balancing in cloud-fog computing. In Advances on Broadband and Wireless Computing, Communication and Applications, L. Barolli, F.-Y. Leu, T. Enokido, and H.-C. Chen (Eds.). Springer International Publishing, Cham, Switzerland, 63--76.Google ScholarGoogle Scholar
  133. Y. Niu, Y. Liu, Y. Li, Z. Zhong, B. Ai, and P. Hui. 2018. Mobility-aware caching scheduling for fog computing in mmWave band. IEEE Access 6 (2018), 69358--69370.Google ScholarGoogle ScholarCross RefCross Ref
  134. Hassan Noura, Ola Salman, Ali Chehab, and Raphael Couturier. 2019. Preserving data security in distributed fog computing. Ad Hoc Networks 94 (2019), 101937.Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Ryuji Oma, Shigenari Nakamura, Dilawaer Duolikun, Tomoya Enokido, and Makoto Takizawa. 2019. Fault-tolerant fog computing models in the IoT. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing, F. Xhafa, F.-Y. Leu, M. Ficco, and C.-T. Yang (Eds.). Springer International Publishing, Cham, Switzerland, 14--25.Google ScholarGoogle Scholar
  136. Opeyemi Osanaiye, Shuo Chen, Zheng Yan, Rongxing Lu, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. 2017. From cloud to fog computing: A review and a conceptual live VM migration framework. IEEE Access 5 (2017), 8284--8300.Google ScholarGoogle ScholarCross RefCross Ref
  137. Umar Ozeer, Xavier Etchevers, Loïc Letondeur, François-Gaël Ottogalli, Gwen Salaün, and Jean-Marc Vincent. 2018. Resilience of stateful IoT applications in a dynamic fog environment. In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services. ACM, New York, NY, 332--341.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya. 2019. Microservices-based IoT application placement within heterogeneous and resource constrained fog computing environments. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing. ACM, New York, NY, 71--81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. X. Pang, Z. Bie, and X. Lin. 2018. Access point decoding coded MapReduce for tree fog network. In Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC’18). 384--388.Google ScholarGoogle Scholar
  140. Charith Perera, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec, and Athanasios V. Vasilakos. 2017. Fog computing for sustainable smart cities: A survey. ACM Computing Surveys 50, 3 (2017), 32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. S. Prabavathy, K. Sundarakantham, S. Mercy Shalinie, and K. Narasimha Mallikarjunan. 2019. Fog computing-based autonomic security approach to Internet of Things applications. In Computational Intelligence: Theories, Applications and Future Directions—Volume II, N. K. Verma and A. K. Ghosh (Eds.). Springer Singapore, Singapore, 3--14.Google ScholarGoogle Scholar
  142. J. S. Preden, K. Tammemae, A. Jantsch, M. Leier, A. Riid, and E. Calis. 2015. The benefits of self-awareness and attention in fog and mist computing. Computer 48, 7 (July 2015), 37--45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito, and Omer Rana. 2019. Fog computing for the Internet of Things: A survey. ACM Transactions on Internet Technology 19, 2 (2019), 18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino. 2018. Companion fog computing: Supporting things mobility through container migration at the edge. In Proceedings of the IEEE International Conference on Smart Computing. 97--105.Google ScholarGoogle Scholar
  145. Dadmehr Rahbari and Mohsen Nickray. 2019. Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Networking and Applications 13 (Feb. 2019), 104--122.Google ScholarGoogle Scholar
  146. M. R. Ramli, P. T. Daely, J. Lee, and D. Kim. 2019. Bio-inspired service provisioning scheme for fog-based Industrial Internet of Things. In Proceedings of the 24th IEEE International Conference on Emerging Technologies and Factory Automation. 1661--1664.Google ScholarGoogle Scholar
  147. Rodrigo Roman, Javier Lopez, and Masahiro Mambo. 2018. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems 78 (2018), 680--698.Google ScholarGoogle ScholarCross RefCross Ref
  148. J. Santos, T. Wauters, B. Volckaert, and F. De Turck. 2019. Towards network-aware resource provisioning in Kubernetes for fog computing applications. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft’19). 351--359.Google ScholarGoogle Scholar
  149. S. Sarkar, S. Chatterjee, and S. Misra. 2015. Assessment of the suitability of fog computing in the context of Internet of Things. IEEE Transactions on Cloud Computing PP, 99 (2015), 1.Google ScholarGoogle Scholar
  150. M. Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (Jan. 2017), 30--39.Google ScholarGoogle ScholarCross RefCross Ref
  151. Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and Beate Ottenwälder. 2016. Incremental deployment and migration of geo-distributed situation awareness applications in the fog. In Proceedings of the 10th ACM International Conference on Distributed and Event-Based Systems (DEBS’16). ACM, New York, NY, 258--269.Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. H. Shah-Mansouri and V. W. S. Wong. 2018. Hierarchical fog-cloud computing for IoT systems: A computation offloading game. IEEE Internet of Things Journal 5, 4 (Aug. 2018), 3246--3257.Google ScholarGoogle ScholarCross RefCross Ref
  153. Shivi Sharma and Hemraj Saini. 2019. A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustainable Computing: Informatics and Systems 24 (2019), 100355.Google ScholarGoogle ScholarCross RefCross Ref
  154. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing: Vision and challenges. IEEE Internet of Things Journal 3, 5 (Oct. 2016), 637--646.Google ScholarGoogle ScholarCross RefCross Ref
  155. W. Shi and S. Dustdar. 2016. The promise of edge computing. Computer 49, 5 (May 2016), 78--81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. Syed Noorulhassan Shirazi, Antonios Gouglidis, Arsham Farshad, and David Hutchison. 2017. The extended cloud: Review and analysis of mobile edge computing and fog from a security and resilience perspective. IEEE Journal on Selected Areas in Communications 35, 11 (2017), 2586--2595.Google ScholarGoogle ScholarCross RefCross Ref
  157. Leila Shooshtarian, Dapeng Lan, and Amir Taherkordi. 2019. A clustering-based approach to efficient resource allocation in fog computing. In Pervasive Systems, Algorithms and Networks, C. Esposito, J. Hong, and K.-K. Raymond Choo (Eds.). Springer International Publishing, Cham, Switzerland, 207--224.Google ScholarGoogle Scholar
  158. Anil Singh and Nitin Auluck. 2019. Load balancing aware scheduling algorithms for fog networks. Software: Practice and Experience. Early Access. June 18, 2019. DOI:https://doi.org/10.1002/spe.2722Google ScholarGoogle Scholar
  159. Simar Preet Singh, Anju Sharma, and Rajesh Kumar. 2019. Design and exploration of load balancers for fog computing using fuzzy logic. Simulation Modelling Practice and Theory 101 (2019), 102017.Google ScholarGoogle ScholarCross RefCross Ref
  160. Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp Leitner. 2017. Optimized IoT service placement in the fog. Service Oriented Computing and Applications 11, 4 (Dec. 2017), 427--443.Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Z. Su, Q. Xu, J. Luo, H. Pu, Y. Peng, and R. Lu. 2018. A secure content caching scheme for disaster backup in fog computing enabled mobile social networks. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4579--4589.Google ScholarGoogle ScholarCross RefCross Ref
  162. Huaiying Sun, Huiqun Yu, Guisheng Fan, and Liqiong Chen. 2019. Energy and time efficient task offloading and resource allocation on the generic IoT-fog-cloud architecture. Peer-to-Peer Networking and Applications 13 (July 2019), 548--563.Google ScholarGoogle Scholar
  163. M. Suter, R. Eidenbenz, Y. Pignolet, and A. Singla. 2019. Fog application allocation for automation systems. In Proceedings of the 2019 IEEE International Conference on Fog Computing (ICFC’19). 97--106.Google ScholarGoogle Scholar
  164. Madiha H. Syed, Eduardo B. Fernandez, and Mohammad Ilyas. 2016. A pattern for fog computing. In Proceedings of the 10th Travelling Conference on Pattern Languages of Programs (VikingPLoP’16). ACM, New York, NY, Article 13, 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. Shreshth Tuli, Redowan Mahmud, Shikhar Tuli, and Rajkumar Buyya. 2019. FogBus: A blockchain-based lightweight framework for edge and fog computing. Journal of Systems and Software 154 (2019), 22--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. Dimitrios Tychalas and Helen Karatza. 2020. A scheduling algorithm for a fog computing system with bag-of-tasks jobs: Simulation and performance evaluation. Simulation Modelling Practice and Theory 98 (2020), 101982.Google ScholarGoogle ScholarCross RefCross Ref
  167. Minoru Uehara. 2018. Mist Computing: Linking Cloudlet to Fogs. Springer International Publishing, Cham, Switzerland, 201--213.Google ScholarGoogle Scholar
  168. P. Varshney and Y. Simmhan. 2017. Demystifying fog computing: Characterizing architectures, applications and abstractions. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC’17). 115--124.Google ScholarGoogle Scholar
  169. Salvatore Venticinque and Alba Amato. 2019. A methodology for deployment of IoT application in fog. Journal of Ambient Intelligence and Humanized Computing 10, 5 (May 2019), 1955--1976.Google ScholarGoogle ScholarCross RefCross Ref
  170. N. Verba, K. Chao, J. Lewandowski, N. Shah, A. James, and F. Tian. 2019. Modeling Industry 4.0 based fog computing environments for application analysis and deployment. Future Generation Computer Systems 91 (2019), 48--60.Google ScholarGoogle ScholarCross RefCross Ref
  171. Paola G. Vinueza Naranjo, Enzo Baccarelli, and Michele Scarpiniti. 2018. Design and energy-efficient resource management of virtualized networked fog architectures for the real-time support of IoT applications. Journal of Supercomputing 74, 6 (June 2018), 2470--2507.Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. Duc-Nghia Vu, Nhu-Ngoc Dao, Yongwoon Jang, Woongsoo Na, Young-Bin Kwon, Hyunchul Kang, Jason J. Jung, and Sungrae Cho. 2019. Joint energy and latency optimization for upstream IoT offloading services in fog radio access networks. Transactions on Emerging Telecommunications Technologies 30, 4 (2019), e3497.Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. D. Wang, Z. Liu, X. Wang, and Y. Lan. 2019a. Mobility-aware task offloading and migration schemes in fog computing networks. IEEE Access 7 (2019), 43356--43368.Google ScholarGoogle ScholarCross RefCross Ref
  174. T. Wang, J. Zhou, A. Liu, M. Z. A. Bhuiyan, G. Wang, and W. Jia. 2019. Fog-based computing and storage offloading for data synchronization in IoT. IEEE Internet of Things Journal 6, 3 (June 2019), 4272--4282.Google ScholarGoogle Scholar
  175. Wei Wang, Guanyu Wu, Zhe Guo, Liang Qian, Lianghui Ding, and Feng Yang. 2019. Data scheduling and resource optimization for fog computing architecture in Industrial IoT. In Distributed Computing and Internet Technology, G. Fahrnberger, S. Gopinathan, and L. Parida (Eds.). Springer International Publishing, Cham, Switzerland, 141--149.Google ScholarGoogle Scholar
  176. X. Wang, L. Wang, Y. Li, and K. Gai. 2018. Privacy-aware efficient fine-grained data access control in Internet of Medical Things based fog computing. IEEE Access 6 (2018), 47657--47665.Google ScholarGoogle ScholarCross RefCross Ref
  177. Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo. 2019b. Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications. IEEE Transactions on Industrial Informatics 15, 2 (Feb. 2019), 976--986.Google ScholarGoogle Scholar
  178. Mohammad Wazid, Ashok Kumar Das, Neeraj Kumar, and Athanasios V. Vasilakos. 2019. Design of secure key management and user authentication scheme for fog computing services. Future Generation Computer Systems 91 (2019), 475--492.Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. P. Wiener, P. Zehnder, and D. Riemer. 2019. Towards context-aware and dynamic management of stream processing pipelines for fog computing. In Proceedings of the 2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC’19). 1--6.Google ScholarGoogle Scholar
  180. C. Wu and L. Wang. 2019. A deadline-aware estimation of distribution algorithm for resource scheduling in fog computing systems. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC’19). 660--666.Google ScholarGoogle Scholar
  181. Y. Xiao and M. Krunz. 2018. Distributed optimization for energy-efficient fog computing in the Tactile Internet. IEEE Journal on Selected Areas in Communications 36, 11 (Nov. 2018), 2390--2400.Google ScholarGoogle ScholarCross RefCross Ref
  182. M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Nemirovsky. 2014. Key ingredients in an IoT recipe: Fog computing, cloud computing, and more fog computing. In Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD’14). 325--329.Google ScholarGoogle Scholar
  183. J. Yao and N. Ansari. 2019. QoS-aware fog resource provisioning and mobile device power control in IoT networks. IEEE Transactions on Network and Service Management 16, 1 (March 2019), 167--175.Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. Y. Yao, X. Chang, J. Misic, and V. Misic. 2019. Reliable and secure vehicular fog service provision. IEEE Internet of Things Journal 6, 1 (Feb. 2019), 734--743.Google ScholarGoogle ScholarCross RefCross Ref
  185. L. Yin, J. Luo, and H. Luo. 2018. Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4712--4721.Google ScholarGoogle ScholarCross RefCross Ref
  186. Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. 2019. All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture 98 (2019), 289--330.Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue. 2018. On reducing IoT service delay via fog offloading. IEEE Internet of Things Journal 5, 2 (April 2018), 998--1010.Google ScholarGoogle ScholarCross RefCross Ref
  188. L. Yu, T. Jiang, and Y. Zou. 2017. Fog-assisted operational cost reduction for cloud data centers. IEEE Access 5 (2017), 13578--13586.Google ScholarGoogle ScholarCross RefCross Ref
  189. J. Yue, M. Xiao, and Z. Pang. 2018. Distributed fog computing based on batched sparse codes for industrial control. IEEE Transactions on Industrial Informatics 14, 10 (Oct. 2018), 4683--4691.Google ScholarGoogle ScholarCross RefCross Ref
  190. W. Yanez, R. Mahmud, R. Bahsoon, Y. Zhang, and R. Buyya. 2020. Data allocation mechanism for Internet-of-Things systems with blockchain. IEEE Internet of Things Journal 7, 4 (2020), 3509--3522. DOI:https://doi.org/10.1109/JIOT.2020.2972776Google ScholarGoogle ScholarCross RefCross Ref
  191. Deze Zeng, Lin Gu, and Hong Yao. 2018. Towards energy efficient service composition in green energy powered cyber-physical fog systems. Future Generation Computer Systems.Google ScholarGoogle Scholar
  192. M. Zeng, Y. Li, K. Zhang, M. Waqas, and D. Jin. 2018. Incentive mechanism design for computation offloading in heterogeneous fog computing: A contract-based approach. In Proceedings of the IEEE International Conference on Communications (ICC’18). 1--6.Google ScholarGoogle Scholar
  193. G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, and Y. Yang. 2019a. DOTS: Delay-optimal task scheduling among voluntary nodes in fog networks. IEEE Internet of Things Journal 6, 2 (April 2019), 3533--3544.Google ScholarGoogle Scholar
  194. G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M. Zhou. 2019b. FEMTO: Fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet of Things Journal 6, 3 (June 2019), 4388--4400.Google ScholarGoogle Scholar
  195. PeiYun Zhang, MengChu Zhou, and Giancarlo Fortino. 2018. Security and trust issues in fog computing: A survey. Future Generation Computer Systems 88 (2018), 16--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. Dongcheng Zhao, Gang Sun, Dan Liao, Shizhong Xu, and Victor Chang. 2019. Mobile-aware service function chain migration in cloud--fog computing. Future Generation Computer Systems 96 (2019), 591--604.Google ScholarGoogle ScholarCross RefCross Ref
  197. S. Zhao, Y. Yang, Z. Shao, X. Yang, H. Qian, and C. Wang. 2018. FEMOS: Fog-enabled multitier operations scheduling in dynamic wireless networks. IEEE Internet of Things Journal 5, 2 (April 2018), 1169--1183.Google ScholarGoogle ScholarCross RefCross Ref
  198. H. Zheng, K. Xiong, P. Fan, Z. Zhong, and K. B. Letaief. 2019b. Fog-assisted multiuser SWIPT networks: Local computing or offloading. IEEE Internet of Things Journal 6, 3 (June 2019), 5246--5264.Google ScholarGoogle ScholarCross RefCross Ref
  199. Q. Zheng, J. Jin, T. Zhang, J. Li, L. Gao, and Y. Xiang. 2019a. Energy-sustainable fog system for mobile web services in infrastructure-less environments. IEEE Access 7 (2019), 161318--161328.Google ScholarGoogle ScholarCross RefCross Ref
  200. Jingya Zhou, Jianxi Fan, Jin Wang, and Juncheng Jia. 2019. Dynamic service deployment for budget-constrained mobile edge computing. Concurrency and Computation: Practice and Experience (2019), e5436. DOI:https://doi.org/10.1002/cpe.5436Google ScholarGoogle Scholar
  201. Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez. 2019. Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach. IEEE Transactions on Vehicular Technology 68, 4 (April 2019), 3113--3125.Google ScholarGoogle ScholarCross RefCross Ref
  202. C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Yia-Jaaski. 2019. Folo: Latency and quality optimized task allocation in vehicular fog computing. IEEE Internet of Things Journal 6, 3 (June 2019), 4150--4161.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 53, Issue 4
        July 2021
        831 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/3410467
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2020
        • Accepted: 1 May 2020
        • Revised: 1 April 2020
        • Received: 1 January 2020
        Published in csur Volume 53, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • survey
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format