skip to main content
research-article
Open Access

Knowledge Graphs

Authors Info & Claims
Published:02 July 2021Publication History
Skip Abstract Section

Abstract

In this article, we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models, as well as languages used to query and validate knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We conclude with high-level future research directions for knowledge graphs.

References

  1. R. Agrawal, T. Imieliński, and A. Swami. 1993. Mining association rules between sets of items in large databases. In Proc. of SIGMOD.Google ScholarGoogle Scholar
  2. T. Al-Moslmi, M. G. Ocaña, A. L. Opdahl, and C. Veres. 2020. Named entity extraction for knowledge graphs: A literature overview. IEEE Access 8 (2020), 32862–32881.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. Angles. 2018. The property graph database model. In Proc. of AMW.Google ScholarGoogle Scholar
  4. R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. 2017. Foundations of modern query languages for graph databases. ACM Comp. Surv. 50, 5 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Angles, P. Arenas, M. Barceló, P. A. Boncz, G. H. L. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. F. Sequeda, O. van Rest, and H. Voigt. 2018. G-CORE: A core for future graph query languages. In Proc. of SIGMOD.Google ScholarGoogle Scholar
  6. R. Angles and C. Gutiérrez. 2008. Survey of graph database models. ACM Comp. Surv. 40, 1 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. F. Baader, I. Horrocks, C. Lutz, and U. Sattler. 2017. An Introduction to Description Logic. Cambridge University Press.Google ScholarGoogle Scholar
  8. I. Balazevic, C. Allen, and M. Hospedales, T.2019. Hypernetwork knowledge graph embeddings. In Proc. of ICANN Workshops.Google ScholarGoogle Scholar
  9. I. Balazevic, C. Allen, and T. M. Hospedales. 2019. Multi-relational Poincaré graph embeddings. In Proc. of NeurIPs.Google ScholarGoogle Scholar
  10. I. Balazevic, C. Allen, and T. M. Hospedales. 2019. TuckER: Tensor factorization for knowledge graph completion. In Proc. of EMNLP.Google ScholarGoogle Scholar
  11. P. Barceló, E. V. Kostylev, M. Monet, J. Peréz, J. Reutter, and J. P. Silva. 2020. The logical expressiveness of graph neural networks. In Proc. of ICLR.Google ScholarGoogle Scholar
  12. L. Bellomarini, E. Sallinger, and G. Gottlob. 2018. The Vadalog system: Datalog-based reasoning for knowledge graphs. Proc. oVLDB Endow. 11, 9 (2018).Google ScholarGoogle Scholar
  13. M. K. Bergman. 2019. A Common Sense View of Knowledge Graphs. Adaptive Information, Adaptive Innovation, Adaptive Infrastructure Blog. Retrieved from http://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/.Google ScholarGoogle Scholar
  14. K. Bollacker, P. Tufts, T. Pierce, and R. Cook. 2007. A platform for scalable, collaborative, structured information integration. In Proceedings of the International Workshop on Information Integration on the Web (IIWeb’07), Ullas Nambiar and Zaiqing Nie (Eds.).Google ScholarGoogle Scholar
  15. P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti. 2018. Knowledge graphs: New directions for knowledge representation on the semantic web (Dagstuhl Seminar 18371). Dagstuhl Rep. 8, 9 (2018).Google ScholarGoogle Scholar
  16. P. A. Bonatti, A. Hogan, A. Polleres, and L. Sauro. 2011. Robust and scalable linked data reasoning incorporating provenance and trust annotations. J. Web Seman. 9, 2 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  17. A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In Proc. of NIPS.Google ScholarGoogle Scholar
  18. D. Brickley and R. V. Guha. 2014. RDF Schema 1.1. W3C Recommendation. W3C. https://www.w3.org/TR/rdf-schema/.Google ScholarGoogle Scholar
  19. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2014. Spectral networks and locally connected networks on graphs. In Proc. of ICLR.Google ScholarGoogle Scholar
  20. L. Bühmann, J. Lehmann, and P. Westphal. 2016. DL-learner—A framework for inductive learning on the Semantic Web. J. Web Seman. 39 (2016).Google ScholarGoogle Scholar
  21. Š. Čebirić, F. Goasdoué, H. Kondylakis, D. Kotzinos, I. Manolescu, G. Troullinou, and M. Zneika. 2019. Summarizing semantic graphs: A survey. VLDB J. 28, 3 (2019).Google ScholarGoogle Scholar
  22. M. Cochez, P. Ristoski, S. P. Ponzetto, and H. Paulheim. 2017. Global RDF vector space embeddings. In Proc. of ISWC.Google ScholarGoogle Scholar
  23. S. Cox, C. Little, J. R. Hobbs, and F. Pan. 2017. Time Ontology in OWL. W3C Recommendation/OGC 16-071r2. W3C and OGC. https://www.w3.org/TR/owl-time/.Google ScholarGoogle Scholar
  24. R. Cyganiak, D. Wood, and M. Lanthaler. 2014. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation. W3C. https://www.w3.org/TR/rdf11-concepts/.Google ScholarGoogle Scholar
  25. C. d’Amato, S. Staab, A. G. B. Tettamanzi, D. M. Tran, and F. L. Gandon. 2016. Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In Proc. of SAC.Google ScholarGoogle Scholar
  26. A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and M. Zaharia. 2016. GraphFrames: An integrated API for mixing graph and relational queries. In Proc. of GRADES.Google ScholarGoogle Scholar
  27. L. De Raedt (Ed.). 2008. Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer.Google ScholarGoogle Scholar
  28. T. Demeester, T. Rocktäschel, and S. Riedel. 2016. Lifted rule injection for relation embeddings. In Proc. of EMNLP.Google ScholarGoogle Scholar
  29. T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. 2018. Convolutional 2D knowledge graph embeddings. In Proc. of AAAI.Google ScholarGoogle Scholar
  30. R. Q. Dividino, S. Sizov, S. Staab, and B. Schueler. 2009. Querying for provenance, trust, uncertainty and other meta knowledge in RDF. J. Web Seman. 7, 3 (2009).Google ScholarGoogle Scholar
  31. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang. 2014. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proc. of KDD.Google ScholarGoogle Scholar
  32. L. Ehrlinger and W. Wöß. 2016. Towards a definition of knowledge graphs. In Proc. of SEMANTiCS Posters & Demos.Google ScholarGoogle Scholar
  33. D. Fensel, U. Simsek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, I. Toma, J. Umbrich, and A. Wahler. 2020. Knowledge Graphs—Methodology, Tools and Selected Use Cases. Springer.Google ScholarGoogle Scholar
  34. N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. 2018. Cypher: An evolving query language for property graphs. In Proc. of SIGMOD.Google ScholarGoogle Scholar
  35. M. H. Gad-Elrab, D. Stepanova, J. Urbani, and G. Weikum. 2016. Exception-enriched rule learning from knowledge graphs. In Proc. of ISWC.Google ScholarGoogle Scholar
  36. L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. 2013. AMIE: Association rule mining under incomplete evidence in ontological knowledge bases. In Proc. of WWW.Google ScholarGoogle Scholar
  37. L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. 2015. Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 6 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. A. Gesese, R. Biswas, and Sack H.2019. A comprehensive survey of knowledge graph embeddings with literals: Techniques and applications. In Proc. of DL4KG.Google ScholarGoogle Scholar
  39. Y. Gil, S. Miles, K. Belhajjame, D. Garijo, G. Klyne, P. Missier, S. Soiland-Reyes, and S. Zednik. 2013. PROV Model Primer. W3C Working Group Note. W3C. https://www.w3.org/TR/rdf11-concepts/.Google ScholarGoogle Scholar
  40. J. M. Giménez-García, A. Zimmermann, and P. Maret. 2017. NdFluents: An ontology for annotated statements with inference preservation. In Proc. of ESWC.Google ScholarGoogle Scholar
  41. X. Glorot, A. Bordes, J. Weston, and Y. Bengio. 2013. A semantic matching energy function for learning with multi-relational data. In Proc. of ICLR Workshops.Google ScholarGoogle Scholar
  42. R. V. Guha, R. McCool, and R. Fikes. 2004. Contexts for the semantic web. In Proc. of ISWC.Google ScholarGoogle Scholar
  43. S. Guo, Q. Wang, L. Wang, B. Wang, and L. Guo. 2016. Jointly embedding knowledge graphs and logical rules. In Proc. of EMNLP.Google ScholarGoogle Scholar
  44. C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman. 2007. Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19, 2 (2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. W. L. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. 2018. Embedding logical queries on knowledge graphs. In Proc. of NIPS.Google ScholarGoogle Scholar
  46. S. Harris, A. Seaborne, and E. Prud’hommeaux. 2013. SPARQL 1.1 Query Language. W3C Recommendation. W3C. https://www.w3.org/TR/sparql11-query/.Google ScholarGoogle Scholar
  47. O. Hartig. 2017. Foundations of RDF* and SPARQL*—An alternative approach to statement-level metadata in RDF. In Proc. of AMW.Google ScholarGoogle Scholar
  48. T. Heath and C. Bizer. 2011. Linked Data: Evolving the Web into a Global Data Space (1st Edition). Vol. 1. Morgan & Claypool.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. N. Heist, S. Hertling, R. Ringler, and H. Paulheim. 2020. Knowledge graphs on the web—An overview. CoRR abs/2003.00719 (2020).Google ScholarGoogle Scholar
  50. D. Hernández, A. Hogan, and M. Krötzsch. 2015. Reifying RDF: What works well with Wikidata? In Proc. of SSWS.Google ScholarGoogle Scholar
  51. F. L. Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 1–4 (1927).Google ScholarGoogle Scholar
  52. P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph. 2012. OWL 2 Web Ontology Language Primer (2nd Edition). W3C Recommendation. W3C. https://www.w3.org/TR/owl2-primer/.Google ScholarGoogle Scholar
  53. P. Hitzler, M. Krötzsch, and S. Rudolph. 2010. Foundations of Semantic Web Technologies. Chapman and Hall/CRC Press.Google ScholarGoogle Scholar
  54. V. T. Ho, D. Stepanova, M. H. Gad-Elrab, E. Kharlamov, and G. Weikum. 2018. Rule learning from knowledge graphs guided by embedding models. In Proc. of ISWC.Google ScholarGoogle Scholar
  55. J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and G. Weikum. 2011. YAGO2: Exploring and querying world knowledge in time, space, context, and many languages. In Proc. of WWW.Google ScholarGoogle Scholar
  56. A. Hogan. 2020. Knowledge graphs: Research directions. In Proc. of Reasoning Web. Springer.Google ScholarGoogle Scholar
  57. A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. Labra Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A. C. Ngonga Ngomo, S. M. Rashid, A. Rula, L. Schmelzeisen, J. F. Sequeda, S. Staab, and A. Zimmermann. 2020. Knowledge graphs. CoRRarxiv:2003.02320 (2020).Google ScholarGoogle Scholar
  58. M. Homola and L. Serafini. 2012. Contextualized knowledge repositories for the semantic web. J. Web Seman. 12 (2012).Google ScholarGoogle Scholar
  59. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. 2004. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission. https://www.w3.org/Submission/SWRL/.Google ScholarGoogle Scholar
  60. X. Huang, J. Zhang, D. Li, and P. Li. 2019. Knowledge graph embedding based question answering. In Proc. of WSDM.Google ScholarGoogle Scholar
  61. R. Hussein, D. Yang, and P. Cudré-Mauroux. 2018. Are meta-paths necessary? Revisiting heterogeneous graph embeddings. In Proc. of CIKM.Google ScholarGoogle Scholar
  62. A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Manhardt, H. Chafi, M. Capota, N. Sundaram, M. J. Anderson, I. G. Tanase, Y. Xia, L. Nai, and P. A. Boncz. 2016. LDBC graphalytics: A benchmark for large-scale graph on parallel and distributed platforms. Proc. VLDB Endow. 9, 13 (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. D. Janke and S. Staab. 2018. Storing and querying semantic data in the cloud. In Proc. of RW.Google ScholarGoogle Scholar
  64. G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. 2015. Knowledge graph embedding via dynamic mapping matrix. In Proc. of ACL.Google ScholarGoogle Scholar
  65. S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu. 2020. A survey on knowledge graphs: Representation, acquisition and applications. CoRR abs/2002.00388 (2020).Google ScholarGoogle Scholar
  66. E. Kärle, U. Simsek, O. Panasiuk, and D. Fensel. 2018. Building an ecosystem for the Tyrolean tourism knowledge graph. CoRR abs/1805.05744 (2018).Google ScholarGoogle Scholar
  67. S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart. 2019. Relational representation learning for dynamic (knowledge) graphs: A survey. CoRR abs/1905.11485 (2019).Google ScholarGoogle Scholar
  68. S. M. Kazemi and D. Poole. 2018. SimplE embedding for link prediction in knowledge graphs. In Proc. of NIPS.Google ScholarGoogle Scholar
  69. M. Kejriwal. 2019. Domain-specific Knowledge Graph Construction. Springer.Google ScholarGoogle Scholar
  70. M. Kifer and H. Boley. 2013. RIF Overview (2nd Edition). W3C Working Group Note. W3C. https://www.w3.org/TR/rif-overview/.Google ScholarGoogle Scholar
  71. T. N. Kipf and M. Welling. 2017. Semi-supervised classification with graph convolutional networks. In Proc. of ICLR.Google ScholarGoogle Scholar
  72. H. Knublauch and D. Kontokostas. 2017. Shapes Constraint Language (SHACL). W3C Recommendation. W3C. https://www.w3.org/TR/shacl/.Google ScholarGoogle Scholar
  73. A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2017. ImageNet classification with deep convolutional neural networks. ACM Commun. 60, 6 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. M. Krötzsch, M. Marx, A. Ozaki, and V. Thost. 2018. Attributed description logics: Reasoning on knowledge graphs. In Proc. of IJCAI.Google ScholarGoogle Scholar
  75. J. E. Labra Gayo, E. Prud’hommeaux, I. Boneva, and D. Kontokostas. 2017. Validating RDF Data. Vol. 7. Morgan & Claypool.Google ScholarGoogle Scholar
  76. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. 2015. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web J. 6, 2 (2015).Google ScholarGoogle ScholarCross RefCross Ref
  77. Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. 2015. Learning entity and relation embeddings for knowledge graph completion. In Proc. of AAAI.Google ScholarGoogle Scholar
  78. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. 2012. Distributed GraphLab: A framework for machine learning in the cloud. Proc. VLDB Endow. 5, 8 (2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. C. Lu, P. Laublet, and M. Stankovic. 2016. Travel attractions recommendation with knowledge graphs. In Proc. of EKAW.Google ScholarGoogle Scholar
  80. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. 2010. Pregel: A system for large-scale graph processing. In Proc. of SIGMOD.Google ScholarGoogle Scholar
  81. J. McCarthy. 1993. Notes on formalizing context. In Proc. of IJCAI.Google ScholarGoogle Scholar
  82. N. Mihindukulasooriya, M. Rashid, G. Rizzo, R. García-Castro, Ó. Corcho, and M. Torchiano. 2018. RDF shape induction using knowledge base profiling. In Proc. of SAC.Google ScholarGoogle Scholar
  83. T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. In Proc. of ICLR Workshops. arXiv preprint arXiv:1301.3781 (2013).Google ScholarGoogle Scholar
  84. J. J. Miller. 2013. Graph database applications and concepts with Neo4j. In Proc. of SAIC.Google ScholarGoogle Scholar
  85. M. Minsky. 1974. A framework for representing knowledge. MIT-AI Memo 306, Santa Monica (1974). https://dspace.mit.edu/bitstream/handle/1721.1/6089/AIM-306.pdf.Google ScholarGoogle Scholar
  86. F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. 2017. Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proc. of CVPR.Google ScholarGoogle Scholar
  87. B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. 2012. OWL 2 Web Ontology Language Profiles (2nd Edition). W3C Recommendation. W3C. https://www.w3.org/TR/owl2-profiles/.Google ScholarGoogle Scholar
  88. B. Motik, R. Shearer, and I. Horrocks. 2009. Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36 (2009).Google ScholarGoogle Scholar
  89. C. Mungall, A. Ruttenberg, I. Horrocks, and D. Osumi-Sutherland. 2012. OBO Flat File Format 1.4 Syntax and Semantics. Editor’s Draft. https://owlcollab.github.io/oboformat/doc/obo-syntax.html.Google ScholarGoogle Scholar
  90. R. Navigli and S. P. Ponzetto. 2012. BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. AI J. 193 (2012).Google ScholarGoogle Scholar
  91. V. Nguyen, O. Bodenreider, and A. Sheth. 2014. Don’t like RDF reification?: Making statements about statements using singleton property. In Proc. of WWW.Google ScholarGoogle Scholar
  92. M. Nickel, L. Rosasco, and T. A. Poggio. 2016. Holographic embeddings of knowledge graphs. In Proc. of AAAI.Google ScholarGoogle Scholar
  93. M. Nickel and V. Tresp. 2013. Tensor factorization for multi-relational learning. In Proc. of ECML-PKDD.Google ScholarGoogle Scholar
  94. I. Nonaka and H. Takeuchi. 1995. The Knowledge-Creating Company. Oxford University.Google ScholarGoogle Scholar
  95. N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. 2019. Industry-scale knowledge graphs: Lessons and challenges. ACM Queue 17, 2 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66. Stanford InfoLab.Google ScholarGoogle Scholar
  97. J. Z. Pan, G. Vetere, J. M. Gómez-Pérez, and H. Wu (Eds.). 2017. Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer.Google ScholarGoogle Scholar
  98. N. Park, A. Kan, X. L. Dong, T. Zhao, and C. Faloutsos. 2019. Estimating node importance in knowledge graphs using graph neural networks. In Proc. of SIGKDD.Google ScholarGoogle Scholar
  99. N. Park, A. Kan, X. L. Dong, T. Zhao, and C. Faloutsos. 2020. MultiImport: Inferring node importance in a knowledge graph from multiple input signals. In Proc. of SIGKDD.Google ScholarGoogle Scholar
  100. H. Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Seman. Web J. 8, 3 (2017).Google ScholarGoogle Scholar
  101. T. Pellissier Tanon, D. Stepanova, S. Razniewski, P. Mirza, and G. Weikum. 2017. Completeness-aware rule learning from knowledge graphs. In Proc. of ISWC.Google ScholarGoogle Scholar
  102. J. Pennington, R. Socher, and C. Manning. 2014. GloVe: Global vectors for word representation. In Proc. of EMNLP.Google ScholarGoogle Scholar
  103. A. Piscopo, L. Kaffee, C. Phethean, and E. Simperl. 2017. Provenance information in a collaborative knowledge graph: An evaluation of Wikidata external references. In Proc. of ISWC.Google ScholarGoogle Scholar
  104. E. Prud’hommeaux, J. E. Labra Gayo, and H. Solbrig. 2014. Shape expressions: An RDF validation and transformation language. In Proc. of SEMANTICS.Google ScholarGoogle Scholar
  105. J. Pujara, H. Miao, L. Getoor, and W. W. Cohen. 2013. Knowledge graph identification. In Proc. of ISWC.Google ScholarGoogle Scholar
  106. G. Qi, H. Chen, K. Liu, H. Wang, Q. Ji, and T. Wu. 2020. Knowledge Graph.Google ScholarGoogle Scholar
  107. R. Quillian. 1963. A Notation for Representing Conceptual Information: An Application to Semantics and Mechanical English Paraphrasing.Technical Report SP-1395. Systems Development Corp.Google ScholarGoogle Scholar
  108. S. Rabanser, O. Shchur, and S. Günnemann. 2017. Introduction to tensor decompositions and their applications in machine learning. CoRR abs/1711.10781 (2017).Google ScholarGoogle Scholar
  109. P. Ristoski and H. Paulheim. 2016. RDF2Vec: RDF graph embeddings for data mining. In Proc. of ISWC.Google ScholarGoogle Scholar
  110. G. Rizzo, C. d’Amato, N. Fanizzi, and F. Esposito. 2017. Terminological cluster trees for disjointness axiom discovery. In Proc. of ESWC.Google ScholarGoogle Scholar
  111. T. Rocktäschel and S. Riedel. 2017. End-to-end differentiable proving. In Proc. of NIPS.Google ScholarGoogle Scholar
  112. M. A. Rodriguez. 2015. The Gremlin graph traversal machine and language. In Proc. of DBPL.Google ScholarGoogle Scholar
  113. S. Rudolph, M. Krötzsch, and P. Hitzler. 2008. Description logic reasoning with decision diagrams: Compiling SHIQ to disjunctive datalog. In Proc. of ISWC.Google ScholarGoogle Scholar
  114. A. Rula, M. Palmonari, A. Harth, S. Stadtmüller, and A. Maurino. 2012. On the diversity and availability of temporal information in linked open data. In Proc. of ISWC.Google ScholarGoogle Scholar
  115. A. Rula, M. Palmonari, S. Rubinacci, A. Ngonga Ngomo, J. Lehmann, A. Maurino, and D. Esteves. 2019. TISCO: Temporal scoping of facts. J. Web Seman. 54 (2019).Google ScholarGoogle Scholar
  116. A. Sadeghian, M. Armandpour, P. Ding, and P. Wang. 2019. DRUM: End-to-end differentiable rule mining on knowledge graphs. In Proc. of NIPS.Google ScholarGoogle Scholar
  117. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2009. The graph neural network model. IEEE Trans. Neural Netw. 20, 1 (2009).Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. E. W. Schneider. 1973. Course modularization applied: The interface system and its implications for sequence control and data analysis. In Proc. of ADIS.Google ScholarGoogle ScholarCross RefCross Ref
  119. M. Schneider and G. Sutcliffe. 2011. Reasoning in the OWL 2 full ontology language using first-order automated theorem proving. In Proc. of CADE.Google ScholarGoogle Scholar
  120. C. Schuetz, L. Bozzato, B. Neumayr, M. Schrefl, and L. Serafini. 2021. Knowledge graph OLAP: A multidimensional model and query operations for contextualized knowledge graphs. Seman. Web J. (2021). (Accepted; In Press).Google ScholarGoogle Scholar
  121. P. Seifer, J. Härtel, M. Leinberger, R. Lämmel, and S. Staab. 2019. Empirical study on the usage of graph query languages in open source Java projects. In Proc. of SLE.Google ScholarGoogle Scholar
  122. A. Singhal. 2012. Introducing the Knowledge Graph: Things, not strings. Google Blog. Retrieved from https://www.blog.google/products/search/introducing-knowledge-graph-things-not/.Google ScholarGoogle Scholar
  123. R. Socher, D. Chen, C. D. Manning, and A. Ng. 2013. Reasoning with neural tensor networks for knowledge base completion. In Proc. of NIPS.Google ScholarGoogle Scholar
  124. A. Sperduti and A. Starita. 1997. Supervised neural networks for the classification of structures. IEEE Trans. Neural Netw. 8, 3 (1997).Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. U. Straccia. 2009. A minimal deductive system for general fuzzy RDF. In Proc. of RR.Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. P. Stutz, D. Strebel, and A. Bernstein. 2016. Signal/Collect12. Seman. Web J. 7, 2 (2016).Google ScholarGoogle Scholar
  127. F. M. Suchanek, J. Lajus, A. Boschin, and G. Weikum. 2019. Knowledge representation and rule mining in entity-centric knowledge bases. In Proc. of RWeb.Google ScholarGoogle Scholar
  128. Yizhou Sun and Jiawei Han. 2012. Mining Heterogeneous Information Networks: Principles and Methodologies. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  129. Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. 2011. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 4, 11 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Z. Sun, Z. Deng, J. Nie, and J. Tang. 2019. RotatE: Knowledge graph embedding by relational rotation in complex space. In Proc. of ICLR.Google ScholarGoogle Scholar
  131. G. Töpper, M. Knuth, and H. Sack. 2012. DBpedia ontology enrichment for inconsistency detection. In Proc. of I-SEMANTICS.Google ScholarGoogle Scholar
  132. T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. 2016. Complex embeddings for simple link prediction. In Proc. of ICML.Google ScholarGoogle Scholar
  133. L. R. Tucker. 1964. The extension of factor analysis to three-dimensional matrices. In Contributions to Mathematical Psychology. Holt, Rinehart and Winston.Google ScholarGoogle Scholar
  134. O. Udrea, D. Reforgiato Recupero, and V. S. Subrahmanian. 2010. Annotated RDF. ACM Trans. Comput. Log. 11, 2 (2010).Google ScholarGoogle Scholar
  135. S. Vashishth, P. Jain, and P. Talukdar. 2018. CESI: Canonicalizing open knowledge bases using embeddings and side information. In Proc. of WWW.Google ScholarGoogle Scholar
  136. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. 2018. Graph attention networks. In Proc. of ICLR.Google ScholarGoogle Scholar
  137. J. Völker, D. Fleischhacker, and H. Stuckenschmidt. 2015. Automatic acquisition of class disjointness. J. Web Seman. 35, P2 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. D. Vrandečić and M. Krötzsch. 2014. Wikidata: A free collaborative knowledgebase. ACM Commun. 57, 10 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. M. Wang, R. Wang, J. Liu, Y. Chen, L. Zhang, and G. Qi. 2018. Towards empty answers in SPARQL: Approximating querying with RDF embedding. In Proc. of ISWC.Google ScholarGoogle Scholar
  140. Q. Wang, Z. Mao, B. Wang, and L. Guo. 2017. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 12 (Dec. 2017).Google ScholarGoogle ScholarCross RefCross Ref
  141. Q. Wang, B. Wang, and L. Guo. 2015. Knowledge base completion using embeddings and rules. In Proc. of IJCAI.Google ScholarGoogle Scholar
  142. X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. 2019. Heterogeneous graph attention network. In Proc. of WWW.Google ScholarGoogle Scholar
  143. X. Wang and S. Yang. 2019. A tutorial and survey on fault knowledge graph. In Proc. of CyberDI/CyberLife. 256–271.Google ScholarGoogle Scholar
  144. Z. Wang, J. Zhang, J. Feng, and Z. Chen. 2014. Knowledge graph embedding by translating on hyperplanes. In Proc. of AAAI.Google ScholarGoogle Scholar
  145. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2019. A comprehensive survey on graph neural networks. CoRR abs/1901.00596 (2019).Google ScholarGoogle Scholar
  146. Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. 2018. RDF data storage and query processing schemes: A survey. ACM Comput. Surv. 51, 4 (2018).Google ScholarGoogle Scholar
  147. G. Xiao, L. Ding, G. Cogrel, and D. Calvanese. 2019. Virtual knowledge graphs: An overview of systems and use cases. Data Int. 1, 3 (2019), 201–223.Google ScholarGoogle Scholar
  148. R. Xin, J. Gonzalez, M. J. Franklin, and I. Stoica. 2013. GraphX: A resilient distributed graph system on Spark. In Proc. of GRADES.Google ScholarGoogle Scholar
  149. R. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. 2013. Shark: SQL and rich analytics at scale. In Proc. of SIGMOD.Google ScholarGoogle Scholar
  150. K. Xu, W. Hu, J. Leskovec, and S. Jegelka. 2019. How powerful are graph neural networks? In Proc. of ICLR.Google ScholarGoogle Scholar
  151. J. Yan, C. Wang, W. Cheng, M. Gao, and A. Zhou. 2018. A retrospective of knowledge graphs. Front. Comput. Sci. 12, 1 (2018), 55–74.Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. B. Yang, W. Yih, X. He, J. Gao, and L. Deng. 2015. Embedding entities and relations for learning and inference in knowledge bases. In Proc. of ICLR.Google ScholarGoogle Scholar
  153. F. Yang, Z. Yang, and W. W. Cohen. 2017. Differentiable learning of logical rules for knowledge base reasoning. In Proc. of NIPS.Google ScholarGoogle Scholar
  154. L. Yang, Z. Xiao, W. Jiang, Y. Wei, Y. Hu, and H. Wang. 2020. Dynamic heterogeneous graph embedding using hierarchical attentions. In Proc. of ECIR.Google ScholarGoogle Scholar
  155. F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma. 2016. Collaborative knowledge base embedding for recommender systems. In Proc. of SIGKDD.Google ScholarGoogle Scholar
  156. A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. 2012. A general framework for representing, reasoning and querying with annotated semantic web data. J. Web Seman. 12 (Mar. 2012).Google ScholarGoogle Scholar

Index Terms

  1. Knowledge Graphs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 54, Issue 4
          May 2022
          782 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3464463
          Issue’s Table of Contents

          Copyright © 2021 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 July 2021
          • Accepted: 1 January 2021
          • Revised: 1 December 2020
          • Received: 1 April 2020
          Published in csur Volume 54, Issue 4

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format