skip to main content
research-article
Open Access

A Comprehensive Survey of Privacy-preserving Federated Learning: A Taxonomy, Review, and Future Directions

Authors Info & Claims
Published:13 July 2021Publication History
Skip Abstract Section

Abstract

The past four years have witnessed the rapid development of federated learning (FL). However, new privacy concerns have also emerged during the aggregation of the distributed intermediate results. The emerging privacy-preserving FL (PPFL) has been heralded as a solution to generic privacy-preserving machine learning. However, the challenge of protecting data privacy while maintaining the data utility through machine learning still remains. In this article, we present a comprehensive and systematic survey on the PPFL based on our proposed 5W-scenario-based taxonomy. We analyze the privacy leakage risks in the FL from five aspects, summarize existing methods, and identify future research directions.

References

  1. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. 2016. Deep learning with differential privacy. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 308--318.Google ScholarGoogle Scholar
  2. N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie. 2018. Mobile edge computing: A survey. IEEE IoT J. 5, 1 (2018), 450--465.Google ScholarGoogle Scholar
  3. N. Agarwal, A. T. Suresh, F. X. Yu, S. Kumar, and B. McMahan. 2018. cpSGD: Communication-efficient and differentially-private distributed SGD. In Advances in Neural Information Processing Systems, Vol. 31. 7564--7575.Google ScholarGoogle Scholar
  4. D. Agrawal and C. Aggarwal. 2001. On the design and quantification of privacy preserving data mining algorithms. In Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 247--255.Google ScholarGoogle Scholar
  5. A. Ahmed and E. Ahmed. 2016. A survey on mobile edge computing. In Proceedings of the International Conference on Intelligent Systems and Control. 1--8.Google ScholarGoogle Scholar
  6. K. Amin, A. Kulesza, A. Munoz, and S. Vassilvtiskii. 2019. Bounding user contributions: A bias-variance trade-off in differential privacy. In Proceedings of the International Conference on Machine Learning, Vol. 97. 263--271.Google ScholarGoogle Scholar
  7. Muhammad Asad, Ahmed Moustafa, and Takayuki Ito. 2020. FedOpt: Towards communication efficiency and privacy preservation in federated learning. Appl. Sci. 10, 8 (2020), 2864.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Ateniese, L. Mancini, A. Spognardi, et al. 2015. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers. Int. J. Secur. Netw. 10, 3 (2015), 137--150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo. 2019. Analyzing federated learning through an adversarial lens. In Proceedings of the International Conference on Machine Learning, Vol. 97. 634--643.Google ScholarGoogle Scholar
  10. A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers. 2019. Protection against reconstruction and its applications in private federated learning. arxiv:1812.00984. Retrieved from https://arxiv.org/abs/1812.00984.Google ScholarGoogle Scholar
  11. S. Bickel, M. Brückner, and T. Scheffer. 2007. Discriminative learning for differing training and test distributions. In Proceedings of the International Conference on Machine Learning. 81--88.Google ScholarGoogle Scholar
  12. G. R. Blakley. 1979. Safeguarding cryptographic keys. In Proceedings of the International Workshop on Managing Requirements Knowledge. 313--318.Google ScholarGoogle ScholarCross RefCross Ref
  13. K. Bonawitz, V. Ivanov, B. Kreuter, et al. 2017. Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 1175--1191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. 2014. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6, 3 (2014), 1--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. 2019. Low latency privacy preserving inference. In Proceedings of the International Conference on Machine Learning, Vol. 97. 812--821.Google ScholarGoogle Scholar
  16. H. Cao, S. Liu, R. Zhao, and X. Xiong. 2020. IFed: A novel federated learning framework for local differential privacy in power internet of things. Int. J. Distrib. Sens. Netw. 16, 5 (2020), 1550147720919698.Google ScholarGoogle ScholarCross RefCross Ref
  17. N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song. 2019. The secret sharer: Evaluating and testing unintended memorization in neural networks. In Proceedings of the USENIX Security Symposium. 267--284.Google ScholarGoogle Scholar
  18. H. Chabanne, A. De Wargny, J. Milgram, C. Morel, and E. Prouff. 2017. Privacy-preserving classification on deep neural network. IACR Cryptol. ePrint Arch. 2017, 35 (2017).Google ScholarGoogle Scholar
  19. M. Chamikara, P. Bertok, I. Khalil, D. Liu, and S. Camtepe. 2021. Privacy preserving distributed machine learning with federated learning. Computer Communications 171, 1 (2021), 112--125.Google ScholarGoogle ScholarCross RefCross Ref
  20. H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr. 2019. Cronus: Robust and heterogeneous collaborative learning with black-box knowledge transfer. arxiv:1912.11279. Retrieved from https://arxiv.org/abs/1912.11279.Google ScholarGoogle Scholar
  21. K. Chaudhuri and C. Monteleoni. 2009. Privacy-preserving logistic regression. In Advances in Neural Information Processing Systems, Vol. 22. 289--296.Google ScholarGoogle Scholar
  22. K. Chaudhuri, A. Sarwate, and K. Sinha. 2012. Near-optimal differentially private principal components. In Advances in Neural Information Processing Systems, Vol. 25. 989--997.Google ScholarGoogle Scholar
  23. S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. 2005. Toward privacy in public databases. In Theory of Cryptography. 363--385.Google ScholarGoogle Scholar
  24. Hong-You Chen and Wei-Lun Chao. 2021. FedBE: Making bayesian model ensemble applicable to federated learning. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  25. K. Chen and L. Liu. 2008. A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining. Springer, 157--181.Google ScholarGoogle Scholar
  26. Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao. 2020. Fedhealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE Intell. Syst. 4 (2020).Google ScholarGoogle Scholar
  27. K. Cheng, T. Fan, Y. Jin, et al. 2021. Secureboost: A lossless federated learning framework. IEEE Intelligent Systems (2021). DOI:10.1109/MIS.2021.3082561Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. W. Chik. 2013. The singapore personal data protection act and an assessment of future trends in data privacy reform. Comput. Law Secur. Rev. 29 (2013), 554--575.Google ScholarGoogle ScholarCross RefCross Ref
  29. Beongjun Choi, Jy yong Sohn, Dong-Jun Han, and Jaekyun Moon. 2020. Communication-computation efficient secure aggregation for federated learning. arxiv:2012.05433. Retrieved from https://arxiv.org/abs/2012.05433.Google ScholarGoogle Scholar
  30. C. Choquette-Choo, N. Dullerud, A. Dziedzic, et al. 2021. CaPC learning: Confidential and private collaborative learning. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  31. Olivia Choudhury, Aris Gkoulalas-Divanis, Theodoros Salonidis, et al. 2019. Differential privacy-enabled federated learning for sensitive health data. In Proceedings of the NeurIPS Workshop on Machine Learning for Health.Google ScholarGoogle Scholar
  32. O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, and A. Das. 2020. A syntactic approach for privacy-preserving federated learning. In Proceedings of the European Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  33. V. Ciriani, S. Di Vimercati, S. Foresti, and P. Samarati. 2008. K-Anonymous Data Mining: A Survey. Springer, 105--136.Google ScholarGoogle Scholar
  34. G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang. 2018. Privacy at Scale: Local differential privacy in practice. In Proceedings of the International Conference on Management of Data. 1655--1658.Google ScholarGoogle Scholar
  35. W. Dai, Q. Yang, G. Xue, and Y. Yu. 2007. Boosting for transfer learning. In Proceedings of the International Conference on Machine Learning. 193--200.Google ScholarGoogle Scholar
  36. J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. arxiv:1810.04805. Retrieved from https://arxiv.org/abs/1810.04805.Google ScholarGoogle Scholar
  37. W. Diffie and M. Hellman. 1976. New directions in cryptography. IEEE Trans. Inf. Theory 22, 6 (1976), 644--654.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Dong, X. Chen, L. Shen, and D. Wang. 2019. Privacy-preserving distributed machine learning based on secret sharing. In Proceedings of the International Conference on Information and Communications Security. 684--702.Google ScholarGoogle Scholar
  39. Ye Dong, Xiaojun Chen, Liyan Shen, and Dakui Wang. 2020. EaSTFLy: Efficient and secure ternary federated learning. Comput. Secur. 94, 1 (2020), 101824.Google ScholarGoogle ScholarCross RefCross Ref
  40. Abhimanyu Dubey and Alex Pentland. 2020. Differentially-private federated linear bandits. In Advances in Neural Information Processing Systems, Vol. 33. 6003--6014.Google ScholarGoogle Scholar
  41. C. Dwork. 2011. A firm foundation for private data analysis. Commun. ACM 54, 1 (2011), 86--95.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. C. Dwork and M. Naor. 2010. On the difficulties of disclosure prevention in statistical databases or the case for differential privacy. J. Priv. Confident. 2, 1 (2010).Google ScholarGoogle Scholar
  43. C. Dwork and A. Roth. 2014. The Algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 3--4 (2014), 211--407.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. C. Dwork, G. N. Rothblum, and S. Vadhan. 2010. Boosting and differential privacy. In Proceedings of the IEEE Annual Symposium on Foundations of Computer Science. 51--60.Google ScholarGoogle Scholar
  45. A. Elgabli, J. Park, C. Ben Issaid, and M. Bennis. 2021. Harnessing wireless channels for scalable and privacy-preserving federated learning. IEEE Transactions on Communications (2021).Google ScholarGoogle Scholar
  46. T. ElGamal. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 4 (1985), 469--472.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. D. Enthoven and Z. Al-Ars. 2020. An overview of federated deep learning privacy attacks and eefensive strategies. arxiv:2004.04676. Retrieved from https://arxiv.org/abs/2004.04676.Google ScholarGoogle Scholar
  48. A. Fallah, A. Mokhtari, and A. Ozdaglar. 2020. Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. In Advances in Neural Information Processing Systems, Vol. 33. 3557--3568.Google ScholarGoogle Scholar
  49. R. Fantacci and B. Picano. 2020. Federated learning framework for mobile edge computing networks. CAAI Trans. Intell. Technol. 5, 1 (2020), 15--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Aamir Farooq and Mahvish Samar. 2020. Multiplicative perturbation bounds for the block cholesky downdating problem. Int. J. Comput. Math. 97, 12 (2020), 2421--2435.Google ScholarGoogle ScholarCross RefCross Ref
  51. S. Feng and H. Yu. 2020. Multi-participant multi-class vertical federated learning. arxiv:2001.11154. Retrieved from https://arxiv.org/abs/2001.11154.Google ScholarGoogle Scholar
  52. Y. Feng, X. Yang, W. Fang, S. Xia, and X. Tang. 2020. Practical and bilateral privacy-preserving federated learning. arxiv:2002.09843. Retrieved from https://arxiv.org/abs/2002.09843.Google ScholarGoogle Scholar
  53. M. Fredrikson, S. Jha, and T. Ristenpart. 2015. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 1322--1333.Google ScholarGoogle Scholar
  54. M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. 2014. Privacy in Pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In Proceedings of the USENIX Security Symposium. 17--32.Google ScholarGoogle Scholar
  55. B. C. Fung, K. Wang, R. Chen, and P. Yu. 2010. Privacy-preserving data publishing: a survey of recent developments. Comput. Surv. 42, 4 (2010), 1--53.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Clement Fung, Jamie Koerner, Stewart Grant, and Ivan Beschastnikh. 2019. Dancing in the dark: Private multi-party machine learning in an untrusted setting. arxiv:1811.09712. Retrieved from https://arxiv.org/abs/1811.09712.Google ScholarGoogle Scholar
  57. S. Gade and N. Vaidya. 2018. Privacy-Preserving distributed learning via obfuscated stochastic gradients. In Proceedings of the IEEE Conference on Decision and Control. 184--191.Google ScholarGoogle Scholar
  58. A. Galakatos, A. Crotty, and T. Kraska. 2018. Distributed Machine Learning. Springer, New York, 1196--1201.Google ScholarGoogle Scholar
  59. D. Gao, Y. Liu, A. Huang, C. Ju, H. Yu, and Q. Yang. 2019. Privacy-preserving heterogeneous federated transfer learning. In Proceedings of the IEEE International Conference on Big Data. 2552--2559.Google ScholarGoogle Scholar
  60. J. Gao, W. Fan, J. Jiang, and J. Han. 2008. Knowledge transfer via multiple model local structure mapping. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 283--291.Google ScholarGoogle Scholar
  61. Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020. Inverting gradients-how easy is it to break privacy in federated learning. In Advances in Neural Information Processing Systems, Vol. 33. 16937--16947.Google ScholarGoogle Scholar
  62. C. Gentry, A. Sahai, and B. Waters. 2013. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Proceedings of the Annual Cryptology Conference. 75--92.Google ScholarGoogle Scholar
  63. Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2018. Differentially private federated learning: A client level perspective. arxiv:1712.07557. Retrieved from https://arxiv.org/abs/1712.07557.Google ScholarGoogle Scholar
  64. R. Gilad-Bachrach, N. Dowlin, K. Laine, et al. 2016. CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In Proceedings of the International Conference on Machine Learning. 201--210.Google ScholarGoogle Scholar
  65. O. Goldreich, S. Micali, and A. Wigderson. 1987. How to play any mental game. In Proceedings of the ACM Symposium on Theory of Computing. 218--229.Google ScholarGoogle Scholar
  66. M. Gong, Y. Xie, K. Pan, K. Feng, and A. K. Qin. 2020. A survey on differentially private machine learning. IEEE Comput. Intell. Mag. 15, 2 (2020), 49--64.Google ScholarGoogle ScholarCross RefCross Ref
  67. O. Gupta and R. Raskar. 2018. Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1 (2018), 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  68. Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. 2020. FedBoost: A communication-efficient algorithm for federated learning. In Proceedings of the International Conference on Machine Learning, Vol. 119. 3973--3983.Google ScholarGoogle Scholar
  69. M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu. 2020. Efficient and privacy-enhanced federated learning for industrial artificial intelligence. IEEE Trans. Industr. Inf. 16, 10 (2020), 6532--6542.Google ScholarGoogle ScholarCross RefCross Ref
  70. M. Hao, H. Li, G. Xu, S. Liu, and H. Yang. 2019. Towards efficient and privacy-preserving federated deep learning. In Proceedings of the IEEE International Conference on Communications. 1--6.Google ScholarGoogle Scholar
  71. S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne. 2017. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption. arxiv:1711.10677. Retrieved from https://arxiv.org/abs/1711.10677.Google ScholarGoogle Scholar
  72. Lein Harn and Changlu Lin. 2010. Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180, 16 (2010), 3059--3064.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro. 2019. LOGAN: Membership inference attacks against generative models. In Proceedings of the Conference on Privacy Enhancing Technologies. 133--152.Google ScholarGoogle Scholar
  74. Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Group knowledge transfer: Federated learning of large cnns at the edge. In Advances in Neural Information Processing Systems, Vol. 33. 14068--14080.Google ScholarGoogle Scholar
  75. B. Hitaj, G. Ateniese, and F. Perez-Cruz. 2017. Deep Models under the GAN: Information leakage from collaborative deep learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 603--618.Google ScholarGoogle Scholar
  76. Q. Ho, J. Cipar, H. Cui, et al. 2013. More effective distributed ml via a stale synchronous parallel parameter server. In Advances in Neural Information Processing Systems, Vol. 26. 1223--1231.Google ScholarGoogle Scholar
  77. J. Hu and A. V. Vasilakos. 2016. Energy big data analytics and security: Challenges and opportunities. IEEE Trans. Smart Grid 7, 5 (2016), 2423--2436.Google ScholarGoogle ScholarCross RefCross Ref
  78. R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong. 2020. Personalized federated learning with differential privacy. IEEE IoT J. 10 (2020), 9530--9539.Google ScholarGoogle Scholar
  79. S. Janbaz, R. Asghari, B. Bagherpour, and A. Zaghian. 2020. A fast non-interactive publicly verifiable secret sharing scheme. In Proceedings of the International ISC Conference on Information Security and Cryptology. 7--13.Google ScholarGoogle Scholar
  80. B. Jayaraman, L. Wang, D. Evans, and Q. Gu. 2018. Distributed learning without distress: Privacy-preserving empirical risk minimization. In Advances in Neural Information Processing Systems, Vol. 32. 6346--6357.Google ScholarGoogle Scholar
  81. L. Jiang, R. Tan, X. Lou, and G. Lin. 2019. On lightweight privacy-preserving collaborative learning for internet-of-things objects. In Proceedings of the International Conference on Internet of Things Design and Implementation. 70--81.Google ScholarGoogle Scholar
  82. P. Kairouz, H. B. McMahan, B. Avent, et al. 2019. Advances and open problems in federated learning. Foundations and Trends in Machine Learning 14, 1 (2021).Google ScholarGoogle Scholar
  83. P. Kairouz, S. Oh, and P. Viswanath. 2017. The composition theorem for differential privacy. IEEE Trans. Inf. Theory 63, 6 (2017), 4037--4049.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren. 2020. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2, 6 (2020), 305--311.Google ScholarGoogle ScholarCross RefCross Ref
  85. M. Kapralov and K. Talwar. 2013. On differentially private low rank approximation. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. 1395--1414.Google ScholarGoogle Scholar
  86. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. 2003. On the privacy preserving properties of random data perturbation techniques. In Proceedings of the IEEE International Conference on Data Mining. 99--106.Google ScholarGoogle Scholar
  87. S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. 2020. SCAFFOLD: Stochastic controlled averaging for federated learning. In Proceedings of the International Conference on Machine Learning, Vol. 119. 5132--5143.Google ScholarGoogle Scholar
  88. A. Kawachi, K. Tanaka, and K. Xagawa. 2007. Multi-bit cryptosystems based on lattice problems. In Proceedings of the International Workshop on Public Key Cryptography. 315--329.Google ScholarGoogle Scholar
  89. A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar. 2019. Peer-to-Peer federated learning on graphs. arxiv:1901.11173. Retrieved from https://arxiv.org/abs/1901.11173.Google ScholarGoogle Scholar
  90. S. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. 2007. Learning a meta-level prior for feature relevance from multiple related tasks. In Proceedings of the International Conference on Machine Learning. 489--496.Google ScholarGoogle Scholar
  91. H. Li and T. Han. 2019. An end-to-end encrypted neural network for gradient updates transmission in federated learning. In Proceedings of the Data Compression Conference. 589--589.Google ScholarGoogle Scholar
  92. H. Li, D. Liu, Y. Dai, T. Luan, and X. Shen. 2014. Enabling efficient multi-keyword ranked search over encrypted mobile cloud data through blind storage. IEEE Trans. Emerg. Top. Comput. 3, 1 (2014), 127--138.Google ScholarGoogle ScholarCross RefCross Ref
  93. J. Li. 2018. Cyber security meets artificial intelligence: A survey. Front. Inf. Technol. Electr. Eng. 19, 12 (2018), 1462--1474.Google ScholarGoogle ScholarCross RefCross Ref
  94. J. Li, M. Khodak, S. Caldas, and A. Talwalkar. 2019. Differentially private meta-learning. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  95. N. Li, T. Li, and S. Venkatasubramanian. 2007. -closeness: Privacy Beyond -anonymity and -diversity. In Proceedings of the IEEE International Conference on Data Engineering. 106--115.Google ScholarGoogle Scholar
  96. Q. Li, Z. Wen, and B. He. 2020. Practical federated gradient boosting decision trees. In Proceedings of the AAAI Conference on Artificial Intelligence. 4642--4649.Google ScholarGoogle Scholar
  97. Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, and B. He. 2021. A survey on federated learning systems: Vision, hype and reality for data privacy and protection. arxiv:1907.09693. Retrieved from https://arxiv.org/abs/1907.09693.Google ScholarGoogle Scholar
  98. R. Li, Y. Xiao, C. Zhang, T. Song, and C. Hu. 2018. Cryptographic algorithms for privacy-preserving online applications. Math. Found. Comput. 1, 4 (2018), 311.Google ScholarGoogle ScholarCross RefCross Ref
  99. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. 2020. Federated Learning: Challenges, methods, and future directions. IEEE Sign. Process. Mag. 37, 3 (2020), 50--60.Google ScholarGoogle ScholarCross RefCross Ref
  100. Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021. FedBN: Federated learning on non-iid features via local batch normalization. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  101. Z. Li, V. Sharma, and S. P. Mohanty. 2020. Preserving data privacy via federated learning: Challenges and solutions. IEEE Cons. Electr. Mag. 9, 6 (2020), 8--16.Google ScholarGoogle ScholarCross RefCross Ref
  102. Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, N. Li, and B. Škoric. 2020. Estimating numerical distributions under local differential privacy. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 621--635.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Z. Li and Y. Zhang. 2021. Label-leaks: Membership inference attack with label. arxiv:2007.15528. Retrieved from https://arxiv.org/abs/2007.15528.Google ScholarGoogle Scholar
  104. G. Liang and S. Chawathe. 2004. Privacy-preserving inter-database operations. In Proceedings of the International Conference on Intelligence and Security Informatics. 66--82.Google ScholarGoogle Scholar
  105. W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang, D. Niyato, and C. Miao. 2020. Federated learning in mobile edge networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 3 (2020), 2031--2063.Google ScholarGoogle ScholarCross RefCross Ref
  106. Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble distillation for robust model fusion in federated learning. In Advances in Neural Information Processing Systems, Vol. 33. 2351--2363.Google ScholarGoogle Scholar
  107. D. Liu, T. Miller, R. Sayeed, and K. Mandl. 2018. FADL: Federated-autonomous deep learning for distributed electronic health record. arxiv:1811.11400. Retrieved from https://arxiv.org/abs/1811.11400.Google ScholarGoogle Scholar
  108. Na Liu, Wei Luo, and Qingxiang Xu. 2018. New multiplicative perturbation bounds for the generalized polar decomposition. Appl. Math. Comput. 339, C (2018), 259--271.Google ScholarGoogle Scholar
  109. R. Liu, Y. Cao, M. Yoshikawa, and H. Chen. 2020. FedSel: Federated SGD under Local Differential privacy with top-k dimension selection. In Proceedings of the International Conference on Database Systems for Advanced Applications.Google ScholarGoogle Scholar
  110. X. Liu, H. Li, G. Xu, R. Lu, and M. He. 2020. Adaptive privacy-preserving federated learning. Peer-to-Peer Netw. Appl. 6 (2020), 2356--2366.Google ScholarGoogle ScholarCross RefCross Ref
  111. Y. Liu, Y. Kang, C. P. Xing, T. J. Chen, and Q. Yang. 2020. A secure federated transfer learning framework. IEEE Intell. Syst. 35, 4 (2020), 70--82.Google ScholarGoogle ScholarCross RefCross Ref
  112. Y. Liu, Y. Kang, X. Zhang, et al. 2019. A communication efficient vertical federated learning framework. arxiv:1912.11187. Retrieved from https://arxiv.org/abs/1912.11187.Google ScholarGoogle Scholar
  113. Y. Liu, Z. Ma, Z. Yan, Z. Wang, X. Liu, and J. Ma. 2020. Privacy-preserving federated k-means for proactive caching in next generation cellular networks. Inf. Sci. 521, C (2020), 14--31.Google ScholarGoogle Scholar
  114. H. Lu, C. Liu, T. He, S. Wang, and K. Chan. 2020. Sharing models or coresets: A study based on membership inference attack. In Proceedings of the International Workshop on Federated Learning for User Privacy and Data Confidentiality.Google ScholarGoogle Scholar
  115. S. Lu, Y. Zhang, and Y. Wang. 2020. Decentralized federated learning for electronic health records. In Proceedings of the Annual Conference on Information Sciences and Systems. 1--5.Google ScholarGoogle Scholar
  116. Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang. 2019. Differentially private asynchronous federated learning for mobile edge computing in urban informatics. IEEE Trans. Industr. Inf. 16, 3 (2019), 2134--2143.Google ScholarGoogle ScholarCross RefCross Ref
  117. L. Lyu, H. Yu, and Q. Yang. 2020. Threats to federated learning: A survey. arxiv:2003.02133. Retrieved from https://arxiv.org/abs/2003.02133.Google ScholarGoogle Scholar
  118. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. 2007. -Diversity: Privacy beyond -anonymity. ACM Trans. Knowl. Discov. Data 1, 1 (2007), Article 3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov. 2020. A survey of data partitioning and sampling methods to support big data analysis. Big Data Min. Analyt. 3, 2 (2020), 85--101.Google ScholarGoogle ScholarCross RefCross Ref
  120. G. Malinovskiy, D. Kovalev, E. Gasanov, L. Condat, and P. Richtarik. 2020. From local sgd to local fixed-point methods for federated learning. In Proceedings of the International Conference on Machine Learning, Vol. 119. 6692--6701.Google ScholarGoogle Scholar
  121. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics. 1273--1282.Google ScholarGoogle Scholar
  122. H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. 2018. Learning differentially private recurrent language models. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  123. L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. 2019. Exploiting unintended feature leakage in collaborative learning. In Proceedings of the IEEE Symposium on Security and Privacy. 691--706.Google ScholarGoogle Scholar
  124. P. Mohassel and P. Rindal. 2018. ABY: A mixed protocol framework for machine learning. In Proceedings of the ACM Conference on Computer and Communications Security. 35--52.Google ScholarGoogle Scholar
  125. P. Mohassel and Y. Zhang. 2017. SecureML: A system for scalable privacy-preserving machine learning. In Proceedings of the IEEE Symposium on Security and Privacy. 19--38.Google ScholarGoogle Scholar
  126. Vaikkunth Mugunthan, Anton Peraire-Bueno, and Lalana Kagal. 2020. PrivacyFL: A simulator for privacy-preserving and secure federated learning. In Proceedings of the ACM International Conference on Information & Knowledge Management. 3085--3092.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybinette Balch. 2019. Smpai: Secure multi-party computation for federated learning. In Proceedings of the NeurIPS 2019 Workshop on Robust AI in Financial Services.Google ScholarGoogle Scholar
  128. M. Naseri, J. Hayes, and E. De Cristofaro. 2021. Toward robustness and privacy in federated learning: Experimenting with local and central differential privacy. arxiv:2009.03561. Retrieved from https://arxiv.org/abs/2009.03561.Google ScholarGoogle Scholar
  129. M. Nasr, R. Shokri, et al. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In Proceedings of the IEEE Symposium on Security and Privacy. 739--753.Google ScholarGoogle ScholarCross RefCross Ref
  130. M. Nasr, R. Shokri, and A. Houmansadr. 2018. Machine learning with membership privacy using adversarial regularization. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 634--646.Google ScholarGoogle Scholar
  131. Kang Loon Ng, Zichen Chen, Zelei Liu, Han Yu, Yang Liu, and Qiang Yang. 2020. A multi-player game for studying federated learning incentive schemes. In Proceedings of the International Joint Conference on Artificial Intelligence. 5279--5281.Google ScholarGoogle ScholarCross RefCross Ref
  132. S. Niknam, H. Dhillon, and J. Reed. 2020. Federated learning for wireless communications: Motivation, opportunities, and challenges. IEEE Commun. Mag. 58, 6 (2020), 46--51.Google ScholarGoogle ScholarCross RefCross Ref
  133. T. Orekondy, S. Oh, Y. Zhang, et al. 2019. Gradient-leaks: Understanding and controlling deanonymization in federated learning. In Proceedings of the NeurIPS Workshop on Federated Learning for Data Privacy and Confidentiality.Google ScholarGoogle Scholar
  134. P. Paillier. 1999. Public-Key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques. 223--238.Google ScholarGoogle ScholarCross RefCross Ref
  135. S. J. Pan, I. Tsang, J. Kwok, and Q. Yang. 2010. Domain adaptation via transfer component analysis. IEEE Trans. Neur. Netw. 22, 2 (2010), 199--210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. S. J. Pan and Q. A. Yang. 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10 (2010), 1345--1359.Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. L. T. Phong, Y. Aono, T. Hayashi, L. H. Wang, and S. Moriai. 2018. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forens. Secur. 13, 5 (2018), 1333--1345.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. L. T. Phong and T. T. Phuong. 2019. Privacy-preserving deep learning via weight transmission. IEEE Trans. Inf. Forens. Secur. 14, 11 (2019), 3003--3015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Anastasia Pustozerova and Rudolf Mayer. 2020. Information leaks in federated learning. In Proceedings of the Workshop on Decentralized IoT Systems and Security.Google ScholarGoogle Scholar
  140. Y. Qian, L. Hu, J. Chen, X. Guan, M. M. Hassan, and A. Alelaiwi. 2019. Privacy-aware service placement for mobile edge computing via federated learning. Inf. Sci. 505, 1 (2019), 562--570.Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang. 2020. A survey on access control in the age of internet of things. IEEE IoT J. 7 (2020), 4682--4696.Google ScholarGoogle Scholar
  142. Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng. 2020. Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE IoT J. 7, 6 (2020), 5171--5183.Google ScholarGoogle Scholar
  143. J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence. 2009. Dataset Shift in Machine Learning. The MIT Press.Google ScholarGoogle Scholar
  144. D. Reich, A. Todoki, R. Dowsley, et al. 2019. Privacy-preserving classification of personal text messages with secure multi-party computation. In Advances in Neural Information Processing Systems, Vol. 32. 3757--3769.Google ScholarGoogle Scholar
  145. Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. 2020. Robust federated learning: The case of affine distribution shifts. In Advances in Neural Information Processing Systems, Vol. 33. 21554--21565.Google ScholarGoogle Scholar
  146. X. Ren, C. Yu, W. Yu, et al. 2018. LoPub: High-dimensional crowdsourced data publication with local differential privacy. IEEE Trans. Inf. Forens. Secur. 13, 9 (2018), 2151--2166.Google ScholarGoogle ScholarCross RefCross Ref
  147. M. S. Riazi, K. Laine, B. Pelton, and W. Dai. 2020. HEAX: An architecture for computing on encrypted data. In Proceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems. 1295--1309.Google ScholarGoogle Scholar
  148. R. L. Rivest, L. Adleman, and M. L. Dertouzos. 1978. On data banks and privacy homomorphisms. Found. Sec. Comput. 11, 4 (1978), 169--179.Google ScholarGoogle Scholar
  149. N. Rodríguez-Barroso et al. 2020. Federated learning and differential privacy: Software tools analysis, the sherpa.ai fl framework and methodological guidelines for preserving data privacy. Inf. Fus. 1 (2020), 270--292.Google ScholarGoogle Scholar
  150. D. Rothchild, A. Panda, E. Ullah, et al. 2020. FetchSGD: Communication-efficient federated learning with sketching. In Proceedings of the International Conference on Machine Learning, Vol. 119. 8253--8265.Google ScholarGoogle Scholar
  151. A. G. Roy, S. Siddiqui, et al. 2019. Braintorrent: A peer-to-peer environment for decentralized federated learning. arxiv:1905.06731. Retrieved from https://arxiv.org/abs/1905.06731.Google ScholarGoogle Scholar
  152. P. Samarati and L. Sweeney. 1998. Protecting Privacy when Disclosing Information: -Anonymity and its Enforcement through Generalization and Suppression. Technical Report. SRI International Computer Science Laboratory.Google ScholarGoogle Scholar
  153. A. Sannai. 2018. Reconstruction of training samples from loss functions. arxiv:1805.07337. Retrieved from https://arxiv.org/abs/1805.07337.Google ScholarGoogle Scholar
  154. M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elmagarmid. 2007. Privacy preserving schema and data matching. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 653--664.Google ScholarGoogle Scholar
  155. Mohamed Seif, Ravi Tandon, and Ming Li. 2020. Wireless federated learning with local differential privacy. In Proceedings of the IEEE International Symposium on Information Theory. DOI:https://doi.org/10.1109/ISIT44484.2020.9174426Google ScholarGoogle ScholarCross RefCross Ref
  156. A. Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612--613.Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. S. Sharma, C. Xing, Y. Liu, and Y. Kang. 2019. Secure and efficient federated transfer learning. In Proceedings of the IEEE International Conference on Big Data. 2569--2576.Google ScholarGoogle Scholar
  158. M. Shen, H. Wang, B. Zhang, et al. 2021. Exploiting unintended property leakage in blockchain-assisted federated learning for intelligent edge computing. IEEE IoT J. 8, 4 (2021), 2265--2275.Google ScholarGoogle Scholar
  159. R. Shirey. 2007. Internet Security Glossary, Version 2. Technical Report. RFC 4949, August.Google ScholarGoogle Scholar
  160. R. Shokri, M. Stronati, C. Song, and V. Shmatikov. 2017. Membership inference attacks against machine learning models. In Proceedings of the IEEE Symposium on Security and Privacy. 3--18.Google ScholarGoogle Scholar
  161. David Silver, Julian Schrittwieser, Karen Simonyan, et al. 2017. Mastering the Game of Go without human knowledge. Nature 550, 7676 (2017), 354--359.Google ScholarGoogle Scholar
  162. A. Singh, P. Vepakomma, O. Gupta, and R. Raskar. 2019. Detailed comparison of communication efficiency of split learning and federated learning. arxiv:1909.09145. Retrieved from https://arxiv.org/abs/1909.09145.Google ScholarGoogle Scholar
  163. V. Smith, C. K. Chiang, M. Sanjabi, and A. Talwalkar. 2017. Federated multi-task learning. In Advances in Neural Information Processing Systems, Vol. 30. 4424--4434.Google ScholarGoogle Scholar
  164. Jinhyun So, Basak Guler, and A. Salman Avestimehr. 2020. A scalable approach for privacy-preserving collaborative machine learning. In Advances in Neural Information Processing Systems, Vol. 33. 8054--8066.Google ScholarGoogle Scholar
  165. M. Song, Z. Wang, Z. Zhang, Y. Song, Q. Wang, J. Ren, and H. Qi. 2020. Analyzing user-level privacy attack against federated learning. IEEE J. Select. Areas Commun. 10 (2020), 2430--2444.Google ScholarGoogle ScholarCross RefCross Ref
  166. W. Stallings. 2017. Cryptography and Network Security Principles and Practices (7th ed.). Pearson Education, Inc.Google ScholarGoogle Scholar
  167. Lili Su and Jiaming Xu. 2019. Securing distributed gradient descent in high dimensional statistical learning. ACM Meas. Anal. Comput. Syst. 3, 1 (2019), Article 12.Google ScholarGoogle Scholar
  168. L. Sun, J. Qian, X. Chen, and P. Yu. 2020. LDP-FL: Practical private aggregation in federated learning with local differential privacy. arxiv:2007.15789. Retrieved from https://arxiv.org/abs/2007.15789.Google ScholarGoogle Scholar
  169. T. Szatmari, M. Petersen, M. Korzepa, and T. Giannetsos. 2020. Modelling audiological preferences using federated learning. In Proceedings of the ACM Conference on User Modeling, Adaptation and Personalization. 187--190.Google ScholarGoogle Scholar
  170. H. Tanuwidjaja, R. Choi, and K. Kim. 2019. A survey on deep learning techniques for privacy-preserving. In Proceedings of the International Conference on Machine Learning for Cyber Security. 29--46.Google ScholarGoogle Scholar
  171. H. Tran and J. Hu. 2019. Privacy-preserving big data analytics a comprehensive survey. J. Parallel Distrib. Comput. 134, 1 (2019), 207--218.Google ScholarGoogle ScholarCross RefCross Ref
  172. A. Triastcyn and B. Faltings. 2019. Federated learning with bayesian differential privacy. In Proceedings of the IEEE International Conference on Big Data. 2587--2596.Google ScholarGoogle Scholar
  173. S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou. 2019. A hybrid approach to privacy-preserving federated learning. In Proceedings of the ACM Workshop on Artificial Intelligence and Security. 1--11.Google ScholarGoogle Scholar
  174. S. Truex, L. Liu, K. Chow, M. Gursoy, and W. Wei. 2020. LDP-Fed: Federated learning with local differential privacy. In Proceedings of the ACM International Workshop on Edge Systems, Analytics and Networking. 61--66.Google ScholarGoogle Scholar
  175. S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei. 2019. Demystifying Membership Inference Attacks in Machine Learning as a Service. IEEE Trans. Serv. Comput. (2019). DOI:https://doi.org/10.1109/TSC.2019.2897554Google ScholarGoogle Scholar
  176. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. 2010. Fully homomorphic encryption over the integers. In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques. 24--43.Google ScholarGoogle Scholar
  177. P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar. 2018. Split learning for health: Distributed deep learning without sharing raw patient data. arxiv:1812.00564. Retrieved from https://arxiv.org/abs/1812.00564.Google ScholarGoogle Scholar
  178. J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer. 2020. A survey on distributed machine learning. Comput. Surv. 53, 2 (2020), 1--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. P. Voigt and A. Von dem Bussche. 2017. The EU General Data Protection Regulation (GDPR). Springer International Publishing. DOI:https://doi.org/10.1007/978-3-319-57959-7Google ScholarGoogle Scholar
  180. Isabel Wagner. 2017. Evaluating the strength of genomic privacy metrics. ACM Trans. Priv. Secur. 20, 1 (2017), Article 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. I. Wagner and D. Eckhoff. 2018. Technical privacy metrics: A systematic survey. ACM Comput. Surv. 51, 3 (2018), Article 57.Google ScholarGoogle Scholar
  182. A. Wang, C. Wang, M. Bi, and J. Xu. 2018. A Review of privacy-preserving machine learning classification. In Cloud Computing and Security. 671--682.Google ScholarGoogle Scholar
  183. C. Wang and S. Mahadevan. 2008. manifold alignment using procrustes analysis. In Proceedings of the International Conference on Machine Learning. 1120--1127.Google ScholarGoogle Scholar
  184. G. Wang, C. X. Dang, and Z. Zhou. 2019. Measure contribution of participants in federated learning. In Proceedings of the IEEE International Conference on Big Data. 2597--2604.Google ScholarGoogle Scholar
  185. H. Wang, K. Sreenivasan, S. Rajput, et al. 2020. Attack of the tails: Yes, you really can backdoor federated learning. In Advances in Neural Information Processing Systems, Vol. 33. 16070--16084.Google ScholarGoogle Scholar
  186. J. Wang, Z. Cai, and J. Yu. 2020. Achieving personalized -anonymity-based content privacy for autonomous vehicles in CPS. IEEE Trans. Industr. Inf. 16, 6 (2020), 4242--4251.Google ScholarGoogle ScholarCross RefCross Ref
  187. Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. 2019. Eavesdrop the composition proportion of training labels in federated learning. arxiv:1910.06044. Retrieved from https://arxiv.org/abs/1910.06044.Google ScholarGoogle Scholar
  188. Rong Wang, Yan Zhu, Tung-Shou Chen, and Chin-Chen Chang. 2018. Privacy-preserving algorithms for multiple sensitive attributes satisfying t-closeness. J. Comput. Sci. Technol. 33, 6 (2018), 1231--1242.Google ScholarGoogle ScholarCross RefCross Ref
  189. S. Wang, T. Tuor, T. Salonidis, et al. 2019. Adaptive federated learning in resource constrained edge computing systems. IEEE J. Select. Areas Commun. 37, 6 (2019), 1205--1221.Google ScholarGoogle ScholarCross RefCross Ref
  190. X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen. 2019. In-Edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 33, 5 (2019), 156--165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Y. Wang, Y. Tong, and D. Shi. 2020. Federated latent dirichlet allocation: A local differential privacy based framework. In Proceedings of the AAAI Conference on Artificial Intelligence. 6283--6290.Google ScholarGoogle Scholar
  192. Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi. 2019. Beyond inferring class representatives: User-level privacy leakage from federated learning. In Proceedings of the IEEE Conference on Computer Communications. 2512--2520.Google ScholarGoogle Scholar
  193. Kang Wei, Jun Li, Ming Ding, et al. 2020. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forens. Secur. 15, 1 (2020), 3454--3469.Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. W. Wei, L. Liu, M. Loper, K. Chow, M. Gursoy, S. Truex, and Y. Wu. 2020. A framework for evaluating client privacy leakages in federated learning. In Proceedings of the European Symposium on Research in Computer Security. 545--566.Google ScholarGoogle Scholar
  195. M. Wu, D. Ye, J. Ding, et al. 2021. Incentivizing differentially private federated learning: A multi-dimensional contract approach. IEEE IoT J. (2021). DOI:https://doi.org/10.1109/JIOT.2021.3050163Google ScholarGoogle Scholar
  196. Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. DBA: Distributed backdoor attacks against federated learning. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  197. Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2020. SLSGD: Secure and efficient distributed on-device machine learning. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 213--228.Google ScholarGoogle ScholarCross RefCross Ref
  198. G. Xu, H. Li, S. Liu, K. Yang, and X. Lin. 2020. Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf. Forens. Secur. 15, 1 (2020), 911--926.Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig. 2019. Hybridalpha: An efficient approach for privacy-preserving federated learning. In Proceedings of the ACM Workshop on Artificial Intelligence and Security. 13--23.Google ScholarGoogle Scholar
  200. X. Xu, J. Wu, M. Yang, et al. 2020. Information leakage by model weights on federated learning. In Proceedings of the Workshop on Privacy-Preserving Machine Learning in Practice. 31--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. H. Yang, A. Arafa, T. Quek, and H. Poor. 2020. Age-based scheduling policy for federated learning in mobile edge networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 8743--8747.Google ScholarGoogle Scholar
  202. H. Yang, H. He, W. Zhang, and X. Cao. 2020. FedSteg: A federated transfer learning framework for secure image steganalysis. IEEE Trans. Netw. Sci. Eng. (2020). DOI:https://doi.org/10.1109/TNSE.2020.2996612Google ScholarGoogle Scholar
  203. K. Yang, T. Fan, T. Chen, Y. Shi, and Q. Yang. 2019. A quasi-Newton method based vertical federated learning framework for logistic regression. arxiv:1912.00513. Retrieved from https://arxiv.org/abs/1912.00513.Google ScholarGoogle Scholar
  204. Q. Yang, Y. Liu, T. Chen, and Y. Tong. 2019. Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10, 2 (2019), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu. 2019. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13 (2019), 1--207.Google ScholarGoogle ScholarCross RefCross Ref
  206. S. Yang et al. 2019. Parallel distributed logistic regression for vertical federated learning without third-party coordinator. In Proceedings of the IJCAI’19 Workshop on Federated Machine Learning for User Privacy and Data Confidentiality.Google ScholarGoogle Scholar
  207. A. C. Yao. 1982. Protocols for secure computations. In Proceedings of the Annual Symposium on Foundations of Computer Science. 160--164.Google ScholarGoogle ScholarCross RefCross Ref
  208. X. Yin et al. 2021. 3D fingerprint recognition based on ridge-valley-guided 3D reconstruction and 3D topology polymer feature extraction. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3 (2021), 1085--1091.Google ScholarGoogle ScholarCross RefCross Ref
  209. Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. 2021. Fedmix: Approximation of mixup under mean augmented federated learning. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  210. Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing, Ankit Singla, Dan Alistarh, Ce Zhang, and Ji Liu. 2019. Distributed learning over unreliable networks. In Proceedings of the International Conference on Machine Learning. 7202--7212.Google ScholarGoogle Scholar
  211. Felix Yu, Ankit Singh Rawat, Aditya Menon, and Sanjiv Kumar. 2020. Federated learning with only positive labels. In Proceedings of the International Conference on Machine Learning. 10946--10956.Google ScholarGoogle Scholar
  212. H. Yu et al. 2019. Parallel restarted sgd with faster convergence and less communication: demystifying why model averaging works for deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 5693--5700.Google ScholarGoogle Scholar
  213. Honglin Yuan and Tengyu Ma. 2020. Federated accelerated stochastic gradient descent. In Advances in Neural Information Processing Systems, Vol. 33. 5332--5344.Google ScholarGoogle Scholar
  214. V. Zantedeschi, A. Bellet, and M. Tommasi. 2020. Fully Decentralized joint learning of personalized models and collaboration graphs. In Proceedings of the International Conference on Artificial Intelligence and Statistics. 864--874.Google ScholarGoogle Scholar
  215. C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu. 2020. Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning. In Proceedings of the USENIX Annual Technical Conference. 493--506.Google ScholarGoogle Scholar
  216. Chi Zhang, Yu Liu, Le Wang, Yuehu Liu, Li Li, and Nanning Zheng. 2020. Joint intelligence ranking by federated multiplicative update. IEEE Intell. Syst. 35, 4 (2020), 15--24.Google ScholarGoogle ScholarCross RefCross Ref
  217. D. Zhang, X. Chen, D. Wang, and J. Shi. 2018. A survey on collaborative deep learning and privacy-preserving. In Proceedings of the IEEE 3rd International Conference on Data Science in Cyberspace. 652--658.Google ScholarGoogle Scholar
  218. J. Zhang, B. Chen, S. Yu, and H. Deng. 2019. PEFL: A privacy-enhanced federated learning scheme for big data analytics. In Proceedings of the IEEE Global Communications Conference. 1--6.Google ScholarGoogle Scholar
  219. J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. 2012. Functional mechanism: Regression analysis under differential privacy. In Proceedings of the International Conference on Very Large Data Bases. 1364--1375.Google ScholarGoogle Scholar
  220. J. Zhang, Y. Zhao, J. Wang, and B. Chen. 2020. Fedmec: Improving efficiency of differentially private federated learning via mobile edge computing. Mobile Netw. Appl. 6 (2020), 1--13.Google ScholarGoogle Scholar
  221. X. Zhang, A. Fu, H. Wang, C. Zhou, and Z. Chen. 2020. A privacy-preserving and verifiable federated learning scheme. In Proceedings of the IEEE International Conference on Communications. 1--6.Google ScholarGoogle Scholar
  222. B. Zhao, K. Fan, K. Yang, Z. Wang, H. Li, and Y. Yang. 2021. Anonymous and privacy-preserving federated learning with industrial big data. IEEE Trans. Industr. Inf. (2021). DOI:https://doi.org/10.1109/TII.2021.3052183Google ScholarGoogle Scholar
  223. B. Zhao, K. R. Mopuri, and H. Bilen. 2020. iDLG: Improved deep leakage from gradients. arxiv:2001.02610. Retrieved from https://arxiv.org/abs/2001.02610.Google ScholarGoogle Scholar
  224. K. Zhao, W. Xi, Z. Wang, R. Wang, Z. Jiang, and J. Zhao. 2020. SMSS: Secure member selection strategy in federated learning. IEEE Intell. Syst. 35, 4 (2020), 37--49.Google ScholarGoogle ScholarCross RefCross Ref
  225. Yang Zhao, Jun Zhao, Mengmeng Yang, et al. 2020. Local differential privacy based federated learning for internet of things. IEEE IoT J. 11, 8 (2020), 8836--8853. DOI:https://doi.org/10.1109/JIOT.2020.3037194Google ScholarGoogle Scholar
  226. H. D. Zheng, H. B. Hu, and Z. Y. Han. 2020. Preserving user privacy for machine learning: Local differential privacy or federated machine learning. IEEE Intell. Syst. 35, 4 (2020), 5--14.Google ScholarGoogle ScholarCross RefCross Ref
  227. H. Zhu, Z. Li, M. Cheah, and M. Goh. 2020. Privacy-preserving weighted federated learning within oracle-aided MPC framework. arxiv:2003.07630. Retrieved from https://arxiv.org/abs/2003.07630.Google ScholarGoogle Scholar
  228. L. Zhu, Z. Liu, and S. Han. 2019. Deep leakage from gradients. In Advances in Neural Information Processing Systems, Vol. 32. 14774--14784.Google ScholarGoogle Scholar
  229. Y. Zhu and E. Meijering. 2020. neural architecture search for microscopy cell segmentation. In Proceedings of the International Workshop on Machine Learning in Medical Imaging. 542--551.Google ScholarGoogle Scholar

Index Terms

  1. A Comprehensive Survey of Privacy-preserving Federated Learning: A Taxonomy, Review, and Future Directions

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format