skip to main content
research-article
Open Access

The hardware lottery

Published:19 November 2021Publication History
Skip Abstract Section

Abstract

After decades of incentivizing the isolation of hardware, software, and algorithm development, the catalysts for closer collaboration are changing the paradigm.

References

  1. Amodei, D., Hernandez, D., Sastry, G., Clark, J., Brockman, G., and Sutskever, I. AI and compute. OpenAI (2018), https://openai.com/blog/ai-and-compute/.Google ScholarGoogle Scholar
  2. ARM. Enhancing AI performance for IoT endpoint devices. (2020), https://www.arm.com/company/news/2020/02/new-ai-technology-from-armGoogle ScholarGoogle Scholar
  3. Barham, P. and Isard, M. Machine learning systems are stuck in a rut. In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS '19), (Bertinoro, Italy), ACM, New York, NY, USA, 177--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barnett, S. and Ceci, S. When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin 128, 4 (2002), 612--37.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bi, G. and Poo, M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18, 24 (1998), 10464--10472. arXiv:https://www.jneurosci.org/content/18/24/10464.full.pdf Google ScholarGoogle ScholarCross RefCross Ref
  6. Bubic, A., Cramon, D., and Schubotz, R. Prediction, cognition, and the brain. Frontiers in Human Neuroscience 4 (2010), 25. Google ScholarGoogle ScholarCross RefCross Ref
  7. Chellapilla, K., Puri, S., and Simard, P. High performance convolutional neural networks for document processing. Tenth International Workshop on Frontiers in Handwriting Recognition (2006).Google ScholarGoogle Scholar
  8. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., and Andrew, N. Deep learning with COTS HPC systems. In Proceedings of the 30th Intern. Conf. on Machine Learning (2013), Sanjoy Dasgupta and David McAllester (Eds.). PMLR, Atlanta, GA, USA, 1337--1345. http://proceedings.mlr.press/v28/coates13.htmlGoogle ScholarGoogle Scholar
  9. Collier, B. Little engines that could've: The calculating machines of Charles Babbage. Garland Publishing, Inc. (1991) USA.Google ScholarGoogle Scholar
  10. Computer history 1949--1960: Early vacuum tube computers overview. Computer History Archives Project (2018), https://www.youtube.com/watch?v=WnNm_uJYWhAGoogle ScholarGoogle Scholar
  11. Dean, J. The deep learning revolution and its implications for computer architecture and chip design. IEEE International Solid-State Circuits Conference (2020), 8--14.Google ScholarGoogle Scholar
  12. Dennard, R., Gaensslen, F., Yu, H., Rideout, V., Bassous, E., and LeBlanc, A. Design of ion implanted MOSFET's with very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 5 (1974), 256--268.Google ScholarGoogle ScholarCross RefCross Ref
  13. Dongarra, J., Gates, M., Kurzak, J., Luszczek, P., and Tsai, Y. Autotuning numerical dense linear algebra for batched computation with GPU hardware accelerators. In Proceedings of the IEEE 106, 11 (2018), 2040--2055.Google ScholarGoogle ScholarCross RefCross Ref
  14. Feldman, M. The era of general-purpose computers is ending. The Next Platform (2019), https://bit.ly/3hP8XJhGoogle ScholarGoogle Scholar
  15. Fukushima, K. and Miyake, S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition 15, 6 (1982), 455--469. http://www.sciencedirect.com/science/article/pii/0031320382900243Google ScholarGoogle ScholarCross RefCross Ref
  16. Gupta, S. and Tan, M. EfficientNet-Edge TPU: Creating accelerator-optimized neural networks with AutoML. Google AI Blog (2019), https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.htmlGoogle ScholarGoogle Scholar
  17. Hauck, S. and DeHon, A. Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation. (2017), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarGoogle Scholar
  18. Herculano-Houzel, S., et al. The elephant brain in numbers. Frontiers in Neuroanatomy 8 (2014).Google ScholarGoogle Scholar
  19. Hinton, G. and Anderson, J. Parallel Models of Associative Memory. (1989), L. Erlbaum Associates Inc., USA.Google ScholarGoogle Scholar
  20. Horowitz, M. Computing's energy problem (and what we can do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 10--14.Google ScholarGoogle Scholar
  21. Hotel, H., Johansen, H., Bernholdt, D., Héroux, M., and Hornung, R. Software productivity for extreme-scale science. U.S. Department of Energy Advanced Scientific Computing Research (2014).Google ScholarGoogle Scholar
  22. Isaacson, W. Grace Hopper, computing pioneer. The Harvard Gazette (2014). https://news.harvard.edu/gazette/story/2014/12/grace-hopper-computing-pioneer/Google ScholarGoogle Scholar
  23. Jouppi, N., et al. In-datacenter performance analysis of a tensor processing unit. SIGARCH Comput. Archit. News 45, 2 (June 2017), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kuhn, T. The Structure of Scientific Revolutions. (1962), University of Chicago Press, Chicago.Google ScholarGoogle Scholar
  25. Kurzweil, R. The Age of Intelligent Machines. (1990), MIT Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  26. Larus, J. Spending Moore's dividend. Commun. ACM 52, 5 (May 2009), 62--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L. Backpropagation applied to handwritten zip code recognition. Neural Computation 1, 4 (1989), 541--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lee, H., Brown, K., Sujeeth, A., Chafi, H., Rompf, T., Odersky, M., and Olukotun, K. Implementing domain-specific languages for heterogeneous parallel computing. IEEE Micro 31, 5 (2011), 42--53.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Linnainmaa, S. Taylor expansion of the accumulated rounding error. BIT Numerical Mathematics 16 (1976), 146--160.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. McClelland, J., McNaughton, B., and O'Reilly, R. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review 102 (Aug. 1995), 419--57. Google ScholarGoogle ScholarCross RefCross Ref
  31. Mirhoseini, A., et al. A graph placement methodology for fast chip design. Nature 594 (June 9, 2021), 207--212, https://www.nature.com/articles/s41586-021-03544-w.Google ScholarGoogle ScholarCross RefCross Ref
  32. Moore, D. The Anna Karenina Principle applied to ecological risk assessments of multiple stressors. Human and Ecological Risk Assessment: An International Journal 7, 2 (2001), 231--237. Google ScholarGoogle ScholarCross RefCross Ref
  33. Moore, G. 1965. Cramming more components onto integrated circuits. Electronics 38, 8 (April 1965). https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdfGoogle ScholarGoogle Scholar
  34. Moravec, H. When will computer hardware match the human brain. Journal of Transhumanism 1 (1998).Google ScholarGoogle Scholar
  35. Olukotun, K. Beyond parallel programming with domain specific languages. SIGPLAN Not. 49, 8 (Feb. 2014), 179--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Posselt, E.A. The Jacquard Machine Analyzed and Explained: The Preparation of Jacquard Cards and Practical Hints to Learners of Jacquard Designing. (1888).Google ScholarGoogle Scholar
  37. Prabhakar, R., et al. Plasticine: A reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE 44th Annual Intern. Symposium on Computer Architecture (ISCA). 389--402.Google ScholarGoogle Scholar
  38. Reddi, V., et al. MLPerf inference benchmark. In 2020 ACM/IEEE 47th Annual Intern. Symposium on Computer Architecture (2020), 446--459.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rumelhart, D., Hinton, G., and Williams, R. Learning representations by back-propagating errors. MIT Press (1988), 696--699.Google ScholarGoogle Scholar
  40. Sabour, S., Frost, N., and Hinton, G. Dynamic routing between capsules. (2017), 3856--3866. http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdfGoogle ScholarGoogle Scholar
  41. Shalf, J. The future of computing beyond Moore's law. Philosophical Transactions of the Royal Society A, 378 (2020).Google ScholarGoogle Scholar
  42. Singh, V., Perdigones, A., Garcia, J., Cañas, I., and Mazarrón, F. Analyzing worldwide research in hardware architecture, 1997--2011. Commun. ACM 58 (January 2015), 76--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Steinbuch, K. and Piske, U.A.W. Learning matrices and their applications. IEEE Transactions on Electronic Computers EC-12, 6 (1963), 846--862.Google ScholarGoogle ScholarCross RefCross Ref
  44. Stroop, J. Studies of interference in serial verbal reactions. J. of Experimental Psychology 18, 6 (1935), 643. Google ScholarGoogle ScholarCross RefCross Ref
  45. Thompson, N. and Spanuth, S. The decline of computers as a general purpose technology: Why deep learning and the end of Moore's Law are fragmenting computing. (November 2018).Google ScholarGoogle Scholar
  46. Thompson, N., Greenewald, K., Lee, K., and Manso, G. The computational limits of deep learning. arXiv e-prints, Article arXiv:2007.05558 (July 2020), arXiv:2007.05558 pages. arXiv:2007.05558 [cs.LG]Google ScholarGoogle Scholar
  47. Tolstoy, L. and Bartlett, R. Anna Karenina. Oxford University Press (2016), https://books.google.com/books?id=1DooDwAAQBAJGoogle ScholarGoogle ScholarCross RefCross Ref
  48. Van Der Malsburg, C. Frank Rosenblatt: Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Brain Theory (1986), 245--248.Google ScholarGoogle ScholarCross RefCross Ref
  49. Von Neumann, J., Churchland, P.M., and Churchland, P.S. The Computer and the Brain. Yale University Press (2000), https://books.google.com/books?id=Q30MqJjRv1gCGoogle ScholarGoogle Scholar
  50. Warden, P. and Situnayake, D. TinyML: Machine Learning With TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers. (2019), O'Reilly Media, Inc. https://books.google.com/books?id=sB3mxQEACAAJGoogle ScholarGoogle Scholar

Index Terms

  1. The hardware lottery

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image Communications of the ACM
              Communications of the ACM  Volume 64, Issue 12
              December 2021
              101 pages
              ISSN:0001-0782
              EISSN:1557-7317
              DOI:10.1145/3502158
              Issue’s Table of Contents

              Copyright © 2021 Owner/Author

              This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 19 November 2021

              Check for updates

              Qualifiers

              • research-article
              • Popular
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format