skip to main content
survey

Machine Learning at the Network Edge: A Survey

Published:04 October 2021Publication History
Skip Abstract Section

Abstract

Resource-constrained IoT devices, such as sensors and actuators, have become ubiquitous in recent years. This has led to the generation of large quantities of data in real-time, which is an appealing target for AI systems. However, deploying machine learning models on such end-devices is nearly impossible. A typical solution involves offloading data to external computing systems (such as cloud servers) for further processing but this worsens latency, leads to increased communication costs, and adds to privacy concerns. To address this issue, efforts have been made to place additional computing devices at the edge of the network, i.e., close to the IoT devices where the data is generated. Deploying machine learning systems on such edge computing devices alleviates the above issues by allowing computations to be performed close to the data sources. This survey describes major research efforts where machine learning systems have been deployed at the edge of computer networks, focusing on the operational aspects including compression techniques, tools, frameworks, and hardware used in successful applications of intelligent edge systems.

References

  1. Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 6 (2018), 52138–52160.Google ScholarGoogle ScholarCross RefCross Ref
  2. Adafruit. 2019. Micro Speech Demo. Retrieved from https://learn.adafruit.com/tensorflow-lite-for-edgebadge-kit-quickstart/micro-speech-demo.Google ScholarGoogle Scholar
  3. M. Ali, A. Anjum, M. U. Yaseen, A. R. Zamani, D. Balouek-Thomert, O. Rana, and M. Parashar. 2018. Edge enhanced deep learning system for large-scale video stream analytics. In IEEE 2nd International Conference on Fog and Edge Computing (ICFEC). 1–10. DOI:https://doi.org/10.1109/CFEC.2018.8358733Google ScholarGoogle Scholar
  4. Alasdair Allan. 2018. Deep Learning at the Edge on an Arm Cortex-powered Camera Board. Retrieved from https://blog.hackster.io/deep-learning-at-the-edge-on-an-arm-cortex-powered-camera-board-3ca16eb60ef7.Google ScholarGoogle Scholar
  5. Alasdair Allan. 2019. Benchmarking Edge Computing. Retrieved from https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245.Google ScholarGoogle Scholar
  6. Alasdair Allan. 2019. Benchmarking the Xnor AI2GO Platform on the Raspberry Pi. Retrieved from https://blog.hackster.io/benchmarking-the-xnor-ai2go-platform-on-the-raspberry-pi-628a82af8aea.Google ScholarGoogle Scholar
  7. Alasdair Allan. 2019. Hands-on with the SmartEdge Agile. Retrieved from https://blog.hackster.io/hands-on-with-the-smartedge-agile-b7b7f02b5d4b.Google ScholarGoogle Scholar
  8. Alasdair Allan. 2019. Measuring Machine Learning. Retrieved from https://towardsdatascience.com/measuring-machine-learning-945a47bd3750.Google ScholarGoogle Scholar
  9. G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravindranath, and S. Sinha. 2017. Real-time video analytics: The killer app for edge computing. Computer 50, 10 (2017), 58–67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ganesh Ananthanarayanan, Victor Bahl, Landon Cox, Alex Crown, Shadi Nogbahi, and Yuanchao Shu. 2019. Video analytics—Killer app for edge computing. In 17th International Conference on Mobile Systems, Applications, and Services (MobiSys’19). ACM, New York, NY, 695–696. DOI:https://doi.org/10.1145/3307334.3328589 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Andrej Karpathy. 2019. PyTorch at Tesla. Retrieved from https://www.youtube.com/watch?v=oBklltKXtDE.Google ScholarGoogle Scholar
  12. ARM Limited. Machine Learning ARM ML Processor. Retrieved on July 25, 2021 from https://developer.arm.com/ip-products/processors/machine-learning.Google ScholarGoogle Scholar
  13. Asha Barbaschow. 2018. VMware looking towards IoT and the edge. Retrieved from https://www.zdnet.com/article/vmware-looking-towards-iot-and-the-edge/.Google ScholarGoogle Scholar
  14. M. Barnell, C. Raymond, C. Capraro, D. Isereau, C. Cicotta, and N. Stokes. 2018. High-performance computing (HPC) and machine learning demonstrated in flight using Agile Condor. In IEEE High Performance Extreme Computing Conference (HPEC). 1–4.Google ScholarGoogle Scholar
  15. B. Barry, C. Brick, F. Connor, D. Donohoe, D. Moloney, R. Richmond, M. O’Riordan, and V. Toma. 2015. Always-on vision processing unit for mobile applications. IEEE Micro 35, 2 (Mar. 2015), 56–66. DOI:https://doi.org/10.1109/MM.2015.10Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Sourav Bhattacharya and Nicholas D. Lane. 2016. Sparsification and separation of deep learning layers for constrained resource inference on wearables. In 14th ACM Conference on Embedded Network Sensor Systems CD-ROM (SenSys’16). ACM, New York, NY, 176–189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Sumon Biswas and Hridesh Rajan. 2020. Do the machine learning models on a crowd sourced platform exhibit bias? An empirical study on model fairness. In 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practical secure aggregation for privacy-preserving machine learning. In ACM SIGSAC Conference on Computer and Communications Security. 1175–1191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Andrew A. Borkowski, Catherine P. Wilson, Steven A. Borkowski, Lauren A. Deland, and Stephen M. Mastorides. 2019. Using Apple machine learning algorithms to detect and subclassify non-small cell lung cancer. Arxiv E-prints 1808.08230 (January 2019).Google ScholarGoogle Scholar
  20. Brandon Butler. 2017. What is edge computing and how it’s changing the network. Network World (2017). DOI:https://www.networkworld.com/article/3224893/what-is-edge-computing-and-how-it-s-changing-the-network.html.Google ScholarGoogle Scholar
  21. S. Cass. 2019. Taking AI to the edge: Google’s TPU now comes in a maker-friendly package. IEEE Spectrum 56, 5 (May 2019), 16–17. DOI:https://doi.org/10.1109/MSPEC.2019.8701189Google ScholarGoogle ScholarCross RefCross Ref
  22. W. Chang, L. Chen, and K. Su. 2019. DeepCrash: A deep learning-based internet of vehicles system for head-on and single-vehicle accident detection with emergency notification. IEEE Access 7 (2019), 148163–148175.Google ScholarGoogle ScholarCross RefCross Ref
  23. X. Chang, W. Li, C. Xia, J. Ma, J. Cao, S. U. Khan, and A. Y. Zomaya. 2018. From insight to impact: Building a sustainable edge computing platform for smart homes. In IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). 928–936. DOI:https://doi.org/10.1109/PADSW.2018.8644647Google ScholarGoogle Scholar
  24. G. Chen, C. Parada, and G. Heigold. 2014. Small-footprint keyword spotting using deep neural networks. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 4087–4091. DOI:https://doi.org/10.1109/ICASSP.2014.6854370Google ScholarGoogle Scholar
  25. J. Chen and X. Ran. 2019. Deep learning with edge computing: A review. Proc. IEEE 107, 8 (Aug. 2019), 1655–1674.Google ScholarGoogle ScholarCross RefCross Ref
  26. Min Chen, Yuanwen Tian, Giancarlo Fortino, Jing Zhang, and Iztok Humar. 2018. Cognitive internet of vehicles. Comput. Commun. 120 (2018), 58–70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18). USENIX Association, 578–594. https://www.usenix.org/conference/osdi18/presentation/chen. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Chen, A. Wu, M. A. Bayoumi, and F. Koushanfar. 2013. Editorial low-power, intelligent, and secure solutions for realization of internet of things. IEEE J. Emerg. Select. Topics Circ. Syst. 3, 1 (Mar. 2013), 1–4. DOI:https://doi.org/10.1109/JETCAS.2013.2244771Google ScholarGoogle ScholarCross RefCross Ref
  29. Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model compression and acceleration for deep neural networks. Arxiv E-prints 1710.09282 (2017).Google ScholarGoogle Scholar
  30. Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi, Daniel Kang, Evgenya Pergament, Eyal Cidon, Sachin Katti, and Marco Pavone. 2021. Network offloading policies for cloud robotics: a learning-based approach. Autonomous Robots (2021), 1–16. https://doi.org/10.1007/s10514-021-09987-4Google ScholarGoogle Scholar
  31. Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani. 2020. A comprehensive survey 1109 on model compression and acceleration. Artif. Intell. Rev. (2020), 1–43.Google ScholarGoogle Scholar
  32. Christine Long. 2019. BeagleBone AI Makes a Sneak Preview. Retrieved from https://beagleboard.org/blog/2019-05-16-beaglebone-ai-preview.Google ScholarGoogle Scholar
  33. N. Curukogle and B. M. Ozyildirim. 2018. Deep learning on mobile systems. In Innovations in Intelligent Systems and Applications Conference (ASYU). 1–4. DOI:https://doi.org/10.1109/ASYU.2018.8554039Google ScholarGoogle Scholar
  34. A. Das, M. Degeling, X. Wang, J. Wang, N. Sadeh, and M. Satyanarayanan. 2017. Assisting users in a world full of cameras: A privacy-aware infrastructure for computer vision applications. In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1387–1396. DOI:https://doi.org/10.1109/CVPRW.2017.181Google ScholarGoogle Scholar
  35. Rustem Dautov, Salvatore Distefano, Dario Bruneo, Francesco Longo, Giovanni Merlino, Antonio Puliafito, and Rajkumar Buyya. 2018. Metropolitan intelligent surveillance systems for urban areas by harnessing IoT and edge computing paradigms. Softw., Pract. Exper. 48 (2018), 1475–1492.Google ScholarGoogle ScholarCross RefCross Ref
  36. G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. 2015. Learning in nonstationary environments: A survey. IEEE Comput. Intell. Mag. 10, 4 (2015), 12–25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Utsav Drolia, Katherine Guo, and Priya Narasimhan. 2017. Precog: Prefetching for image recognition applications at the edge. In 2nd ACM/IEEE Symposium on Edge Computing (SEC’17). ACM, New York, NY. DOI:https://doi.org/10.1145/3132211.3134456 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. SparkFun Electronics. SparkFun Edge Hookup Guide. Retreived July 25, 2021 from https://learn.sparkfun.com/tutorials/sparkfun-edge-hookup-guide/all.Google ScholarGoogle Scholar
  39. A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski. 2017. Where’s the bear?—Automating wildlife image processing using IoT and edge cloud systems. In IEEE/ACM 2nd International Conference on Internet-of-Things Design and Implementation (IoTDI). 247–258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. Ezra Tsur, E. Madar, and N. Danan. 2018. Code generation of graph-based vision processing for multiple CUDA cores SoC Jetson TX. In IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). 1–7. DOI:https://doi.org/10.1109/MCSoC2018.2018.00013Google ScholarGoogle ScholarCross RefCross Ref
  41. Z. Feng, S. George, J. Harkes, P. Pillai, R. Klatzky, and M. Satyanarayanan. 2018. Edge-based discovery of training data for machine learning. In IEEE/ACM Symposium on Edge Computing (SEC). 145–158.Google ScholarGoogle Scholar
  42. E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and L. Benini. 2018. GAP-8: A RISC-V SoC for AI at the edge of the IoT. In IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP). 1–4. DOI:https://doi.org/10.1109/ASAP.2018.8445101Google ScholarGoogle Scholar
  43. David Floyer. 2015. The Vital Role of Edge Computing in the Internet of Things. Retrieved from https://wikibon.com/the-vital-role-of-edge-computing-in-the-internet-of-things.Google ScholarGoogle Scholar
  44. The Linux Foundation. Accessed:. The Open Platform for the IoT Edge. Retrieved on July 25, 2021 from https://www.edgexfoundry.org.Google ScholarGoogle Scholar
  45. Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P. Hamilton, and Derek Roth. 2019. A comparative study of fairness-enhancing interventions in machine learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT*’19). Association for Computing Machinery, New York, NY, 329–338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. C. Gao, Antonio Rios-Navarro, Xi Chen, T. Delbrück, and Shih-Chii Liu. 2020. EdgeDRNN: Enabling low-latency recurrent neural network edge inference. In 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). 41–45.Google ScholarGoogle ScholarCross RefCross Ref
  47. Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private federated learning: A client level perspective. CoRR abs/1712.07557 (2017).Google ScholarGoogle Scholar
  48. A. Ghoneim, G. Muhammad, S. U. Amin, and B. Gupta. 2018. Medical image forgery detection for smart healthcare. IEEE Commun. Mag. 56, 4 (Apr. 2018), 33–37. DOI:https://doi.org/10.1109/MCOM.2018.1700817Google ScholarGoogle ScholarCross RefCross Ref
  49. Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma. 2019. Compiling KB-sized machine learning models to tiny IoT devices. In 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’19). ACM, New York, NY, 79–95. DOI:https://doi.org/10.1145/3314221.3314597 Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. 2017. ProtoNN: Compressed and accurate kNN for resource-scarce devices. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Vol. 70. PMLR, 1331–1340. Retrieved from http://proceedings.mlr.press/v70/gupta17a.html. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015. Deep learning with limited numerical precision. In 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML’15). JMLR.org, 1737–1746. Retrieved from http://dl.acm.org/citation.cfm?id=3045118.3045303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Ramyad Hadidi, Jiashen Cao, Michael S. Ryoo, and Hyesoon Kim. 2019. Robustly executing DNNs in IoT systems using coded distributed computing. In 56th Design Automation Conference 2019 (DAC’19). Association for Computing Machinery, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim. 2018. Distributed perception by collaborative robots. IEEE Robot. Autom. Lett. 3, 4 (2018), 3709–3716.Google ScholarGoogle ScholarCross RefCross Ref
  54. Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. arXiv:https://arxiv.org/abs/1510.00149.Google ScholarGoogle Scholar
  55. Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. 2014. Deep Speech: Scaling up end-to-end speech recognition. arXiv:https://arxiv.org/abs/1412.5567.Google ScholarGoogle Scholar
  56. Richard Harper. 2003. Inside the Smart House. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Evan Hennis, Mark Deoust, and Billy Lamberta. 2019. TensorFlow Lite Speech Command Recognition Android Demo. Retrieved from https://github.com/tensorflow/examples/tree/master/lite/examples/speech_commands/android.Google ScholarGoogle Scholar
  58. Jacob Hochstetler, Rahul Padidela, Qing Chen, Qiang Yang, and Songnian Fu. 2018. Embedded deep learning for vehicular edge computing. In IEEE/ACM Symposium on Edge Computing (SEC). 341–343.Google ScholarGoogle ScholarCross RefCross Ref
  59. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv:https://arxiv.org/abs/1704.04861.Google ScholarGoogle Scholar
  60. C. C.-H. Hsu, M. Y.-C. Wang, H. C. H. Shen, R. H. Chiang, and C. H. P. Wen. 2017. FallCare+: An IoT surveillance system for fall detection. In International Conference on Applied System Innovation (ICASI). 921–922.Google ScholarGoogle ScholarCross RefCross Ref
  61. Z. Huai, B. Ding, H. Wang, M. Geng, and L. Zhang. 2019. Towards deep learning on resource-constrained robots: A crowdsourcing approach with model partition. In IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). 989–994.Google ScholarGoogle Scholar
  62. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural networks. In 30th International Conference on Neural Information Processing Systems. 4114–4122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv:https://arxiv.org/abs/1602.07360.Google ScholarGoogle Scholar
  64. Michaela Iorga, Larry B. Feldman, Robert Barton, Michael Martin, Nedim S. Goren, and Charif Mahmoudi. 2018. Fog Computing Conceptual Model. DOI:https://doi.org/10.6028/NIST.SP.500-325Google ScholarGoogle Scholar
  65. D. Isereau, C. Capraro, E. Cote, M. Barnell, and C. Raymond. 2017. Utilizing high-performance embedded computing, Agile Condor, for intelligent processing: An artificial intelligence platform for remotely piloted aircraft. In Intelligent Systems Conference (IntelliSys). 1155–1159. DOI:https://doi.org/10.1109/IntelliSys.2017.8324277Google ScholarGoogle Scholar
  66. Kaya Ismail. 2018. Edge Computing vs. Fog Computing: What’s the Difference?Retrieved from https://www.cmswire.com/information-management/edge-computing-vs-fog-computing-whats-the-difference/.Google ScholarGoogle Scholar
  67. R. Colin Johnson. 2019. Neural Learning on the Edge. Retrieved from https://cacm.acm.org/news/234063-neural-learning-on-the-edge/fulltext.Google ScholarGoogle Scholar
  68. Vinu Joseph, Ganesh L. Gopalakrishnan, Saurav Muralidharan, Michael Garland, and Animesh Garg. 2020. A programmable approach to neural network compression. IEEE Micro 40, 5 (Sep. 2020), 17–25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. Challenges and opportunities in DNN-based video analytics: A demonstration of the BlazeIt video query engine. In 9th Biennial Conference on Innovative Data Systems Research. Retrieved from http://cidrdb.org/cidr2019/papers/p141-kang-cidr19.pdf.Google ScholarGoogle Scholar
  70. Duseok Kang, Euiseok Kim, Inpyo Bae, Bernhard Egger, and Soonhoi Ha. 2018. C-GOOD: C-code generation framework for optimized on-device deep learning. In International Conference on Computer-Aided Design (ICCAD’18). ACM, New York, NY. DOI:https://doi.org/10.1145/3240765.3240786 Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai, and Ramesh Govindan. 2017. Real-time traffic estimation at vehicular edge nodes. In 2nd ACM/IEEE Symposium on Edge Computing (SEC’17). ACM, New York, NY. DOI:https://doi.org/10.1145/3132211.3134461 Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Jae-Yun Kim and Soo-Mook Moon. 2018. Blockchain-based edge computing for deep neural network applications. In Workshop on INTelligent Embedded Systems Architectures and Applications (INTESA’18). Association for Computing Machinery, New York, NY, 53–55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient machine learning in 2 KB RAM for the internet of things. In 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Vol. 70. PMLR, 1935–1944. Retrieved from http://proceedings.mlr.press/v70/kumar17a.html. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Aditya Kusupati, Don Dennis, Chirag Gupta, Ashish Kumar, Shishir Patil, and Harsha Simhadri. 2021. The EdgeML Library: An ML library for machine learning on the Edge. Retrieved on July 25, 2021 from https://github.com/Microsoft/EdgeML.Google ScholarGoogle Scholar
  75. Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and Manik Varma. 2018. FastGRNN: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In Advances in Neural Information Processing Systems 31. Curran Associates, Inc., 9017–9028. Retrieved from http://papers.nips.cc/paper/8116-fastgrnn-a-fast-accurate-stable-and-tiny-kilobyte-sized-gated-recurrent-neural-network.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Gant Laborde. 2019. Perf Machine Learning on Rasp Pi. Retrieved from https://medium.com/free-code-camp/perf-machine-learning-on-rasp-pi-51101d03dba2.Google ScholarGoogle Scholar
  77. Liangzhen Lai and Naveen Suda. 2018. Enabling deep learning at the IoT edge. In International Conference on Computer-Aided Design (ICCAD’18). ACM, New York, NY. DOI:https://doi.org/10.1145/3240765.3243473 Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar. 2016. DeepX: A software accelerator for low-power deep learning inference on mobile devices. In 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). 1–12. DOI:https://doi.org/10.1109/IPSN.2016.7460664 Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. S. Lee, K. Son, H. Kim, and J. Park. 2017. Car plate recognition based on CNN using embedded system with GPU. In 10th International Conference on Human System Interactions (HSI). 239–241. DOI:https://doi.org/10.1109/HSI.2017.8005037Google ScholarGoogle Scholar
  80. D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah. 2016. DeepCham: Collaborative edge-mediated adaptive deep learning for mobile object recognition. In IEEE/ACM Symposium on Edge Computing (SEC). 64–76. DOI:https://doi.org/10.1109/SEC.2016.38Google ScholarGoogle ScholarCross RefCross Ref
  81. En Li, Zhi Zhou, and Xu Chen. 2018. Edge intelligence: On-demand deep learning model co-inference with device-edge synergy. In Workshop on Mobile Edge Communications (MECOMM’18). ACM, New York, NY, 31–36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. 2020. The Deep Learning Compiler: A Comprehensive Survey. arXiv:https://arxiv.org/abs/2002.03794.Google ScholarGoogle Scholar
  83. Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2019. Federated learning: Challenges, methods, and future directions. Arxiv Eprints abs/1908.07873 (2019).Google ScholarGoogle Scholar
  84. Le Liang, Hao Ye, and Geoffrey Ye Li. 2018. Toward intelligent vehicular networks: A machine learning framework. IEEE Internet Things J. 6, 1 (2018), 124–135.Google ScholarGoogle ScholarCross RefCross Ref
  85. Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. 2020. Federated learning in mobile edge networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 22, 3 (2020), 2031–2063.Google ScholarGoogle ScholarCross RefCross Ref
  86. Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. 2020. Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training. arXiv:https://arxiv.org/abs/1712.01887.Google ScholarGoogle Scholar
  87. Zhong Qiu Lin, Audrey G. Chung, and Alexander Wong. 2018. EdgeSpeechNets: Highly Efficient Deep Neural Networks for Speech Recognition on the Edge. arXiv:https://arxiv.org/abs/1810.08559.Google ScholarGoogle Scholar
  88. C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen, and P. Hou. 2018. A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure. IEEE Trans. Serv.Comput. 11, 2 (Mar. 2018), 249–261. DOI:https://doi.org/10.1109/TSC.2017.2662008Google ScholarGoogle ScholarCross RefCross Ref
  89. Lumin Liu, Jun Zhang, S. H. Song, and Khaled B. Letaief. 2019. Client-Edge-Cloud Hierarchical Federated Learning. arXiv:https://arxiv.org/abs/1905.06641Google ScholarGoogle Scholar
  90. L. Liu, X. Zhang, M. Qiao, and W. Shi. 2018. SafeShareRide: Edge-based attack detection in ridesharing services. In IEEE/ACM Symposium on Edge Computing (SEC). 17–29. DOI:https://doi.org/10.1109/SEC.2018.00009Google ScholarGoogle Scholar
  91. Qiang Liu, Siqi Huang, and Tao Han. 2017. Fast and accurate object analysis at the edge for mobile augmented reality: Demo. In 2nd ACM/IEEE Symposium on Edge Computing (SEC’17). ACM, New York, NY. DOI:https://doi.org/10.1145/3132211.3132458 Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Wang Luping, Wang Wei, and Li Bo. 2019. CMFL: Mitigating communication overhead for federated learning. https://doi.org/10.1109/ICDCS.2019.00099Google ScholarGoogle Scholar
  93. Salma Abdel Magid, Francesco Petrini, and Behnam Dezfouli. 2020. Image classification on IoT edge devices: Profiling and modeling. Clust. Comput. 23, 2 (2020), 1025–1043.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P. Sheth. 2018. Machine learning for internet of things data analysis: A survey. Dig. Commun. Netw. 4, 3 (2018), 161–175. DOI:https://doi.org/10.1016/j.dcan.2017.10.002Google ScholarGoogle ScholarCross RefCross Ref
  95. James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs, Jacques Bughin, and Dan Aharon. 2015. The Internet of Things: Mapping the Value Behind the Hype. Technical Report. McKinsey and Company.Google ScholarGoogle Scholar
  96. J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen. 2017. MoDNN: Local distributed mobile computing system for deep neural network. In Design, Automation Test in Europe Conference Exhibition (DATE). 1396–1401. DOI:https://doi.org/10.23919/DATE.2017.7927211 Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong. 2018. Learning from differentially private neural activations with edge computing. In IEEE/ACM Symposium on Edge Computing (SEC). 90–102. DOI:https://doi.org/10.1109/SEC.2018.00014Google ScholarGoogle Scholar
  98. C. Marantos, N. Karavalakis, V. Leon, V. Tsoutsouras, K. Pekmestzi, and D. Soudris. 2018. Efficient support vector machines implementation on Intel/Movidius Myriad 2. In 7th International Conference on Modern Circuits and Systems Technologies (MOCAST). 1–4. DOI:https://doi.org/10.1109/MOCAST.2018.8376630Google ScholarGoogle Scholar
  99. V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge. 2020. Real-time apple detection system using embedded systems with hardware accelerators: An edge AI application. In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 954–964.Google ScholarGoogle Scholar
  100. Bradley McDanel, Surat Teerapittayanon, and H. T. Kung. 2017. Embedded Binarized Neural Networks. arXiv:https://arxiv.org/abs/1709.02260.Google ScholarGoogle Scholar
  101. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In 20th International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research), Vol. 54. PMLR, 1273–1282. Retrieved from http://proceedings.mlr.press/v54/mcmahan17a.html.Google ScholarGoogle Scholar
  102. Microsoft. 2018. Embedded Learning Library. https://microsoft.github.io/ELL/.Google ScholarGoogle Scholar
  103. Microsoft. 2019. Project Brainwave. Retrieved from https://www.microsoft.com/en-us/research/project/project-brainwave/.Google ScholarGoogle Scholar
  104. S. A. Miraftabzadeh, P. Rad, K. R. Choo, and M. Jamshidi. 2018. A privacy-aware architecture at the edge for autonomous real-time identity reidentification in crowds. IEEE Internet Things J. 5, 4 (Aug. 2018), 2936–2946. DOI:https://doi.org/10.1109/JIOT.2017.2761801Google ScholarGoogle ScholarCross RefCross Ref
  105. M. G. S. Murshed, J. J. Carroll, N. Khan, and F. Hussain. 2020. Resource-aware on-device deep learning for supermarket hazard detection. In 19th IEEE International Conference on Machine Learning and Applications (ICMLA). 871–876. DOI:https://doi.org/10.1109/ICMLA51294.2020.00142Google ScholarGoogle Scholar
  106. Pedro Navarro Lorente, Carlos Fernandez, Raul Borraz, and Diego Alonso. 2016. A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data. Sensors 17 (12 2016), 18. DOI:https://doi.org/10.3390/s17010018Google ScholarGoogle Scholar
  107. Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng. 2011. Multimodal deep learning. In 28th International Conference on International Conference on Machine Learning (ICML’11). Omnipress, 689–696. Retrieved from http://dl.acm.org/citation.cfm?id=3104482.3104569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Seyed Yahya Nikouei, Yu Chen, Sejun Song, Ronghua Xu, Baek-Young Choi, and Timothy R. Faughnan. 2018. Intelligent surveillance as an edge network service: from Harr-Cascade, SVM to a lightweight CNN. arxiv:1805.00331.Google ScholarGoogle Scholar
  109. Takayuki Nishio and Ryo Yonetani. 2018. Client selection for federated learning with heterogeneous resources in mobile edge. In IEEE International Conference on Communications (ICC). 1–7.Google ScholarGoogle Scholar
  110. Henry Friday Nweke, Ying Wah Teh, Mohammed Ali Al-garadi, and Uzoma Rita Alo. 2018. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Exp. Syst. Applic. 105 (2018), 233–261. DOI:https://doi.org/10.1016/j.eswa.2018.03.056Google ScholarGoogle ScholarCross RefCross Ref
  111. Samuel S. Ogden and Tian Guo. 2018. MODI: Mobile deep inference made efficient by edge computing. In USENIX Workshop on Hot Topics in Edge Computing (HotEdge’18). USENIX Association. Retrieved from https://www.usenix.org/conference/hotedge18/presentation/ogden.Google ScholarGoogle Scholar
  112. S. A. Osia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee, and H. Haddadi. 2018. Private and scalable personal data analytics using hybrid edge-to-cloud deep learning. Computer 51, 5 (May 2018), 42–49.Google ScholarGoogle ScholarCross RefCross Ref
  113. Anand Oswal. 2018. Time to Get Serious About Edge Computing. Retrieved from https://blogs.cisco.com/enterprise/time-to-get-serious-about-edge-computing.Google ScholarGoogle Scholar
  114. Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally. 2017. SCNN: An accelerator for compressed-sparse convolutional neural networks. SIGARCH Comput. Archit. News 45, 2 (June 2017), 27–40. DOI:https://doi.org/10.1145/3140659.3080254Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Donghyun Park, Seulgi Kim, Yelin An, and Jae-Yoon Jung. 2018. LiReD: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks. Sensors 18, 7 (2018). DOI:https://doi.org/10.3390/s18072110Google ScholarGoogle Scholar
  116. Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. 2018. Energy-efficient neural network accelerator based on outlier-aware low-precision computation. In 45th International Symposium on Computer Architecture (ISCA’18). IEEE Press, 688–698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. J. Park, S. Samarakoon, M. Bennis, and M. Debbah. 2019. Wireless network intelligence at the edge. Proc. IEEE 107, 11 (2019), 2204–2239.Google ScholarGoogle ScholarCross RefCross Ref
  118. David Patterson and Andrew Waterman. 2017. The RISC-V Reader: An Open Architecture Atlas. Strawberry Canyon LLC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Diego Peteiro-Barral and Bertha Guijarro-Berdiñas. 2013. A survey of methods for distributed machine learning. Prog. Artif. Intell. 2, 1 (01 Mar. 2013), 1–11.Google ScholarGoogle Scholar
  120. K. Pradeep, K. Kamalavasan, R. Natheesan, and A. Pasqual. 2018. EdgeNet: SqueezeNet like convolution neural network on embedded FPGA. In 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS). 81–84. DOI:https://doi.org/10.1109/ICECS.2018.8617876Google ScholarGoogle Scholar
  121. MD Abdur Rahman, M. Shamim Hossain, George Loukas, Elham Hassanain, Syed Sadiqur Rahman, Mohammed F. Alhamid, and Mohsen Guizani. 2018. Blockchain-based mobile edge computing framework for secure therapy applications. IEEE Access 6 (2018), 72469–72478.Google ScholarGoogle ScholarCross RefCross Ref
  122. Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement. arXiv:https://arxiv.org/abs/1804.02767.Google ScholarGoogle Scholar
  123. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should I trust you?”: Explaining the predictions of any classifier. In 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). Association for Computing Machinery, New York, NY, 1135–1144. DOI:https://doi.org/10.1145/2939672.2939778 Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein, Jack Montgomery, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo Park, Artem Rakhov, Misha Smelyanskiy, and Man Wang. 2019. Glow: Graph Lowering Compiler Techniques for Neural Networks. arXiv:https://arxiv.org/abs/1805.00907.Google ScholarGoogle Scholar
  125. K. Rungsuptaweekoon, V. Visoottiviseth, and R. Takano. 2017. Evaluating the power efficiency of deep learning inference on embedded GPU systems. In 2nd International Conference on Information Technology (INCIT). 1–5. DOI:https://doi.org/10.1109/INCIT.2017.8257866Google ScholarGoogle Scholar
  126. M. Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (Jan. 2017), 30–39. DOI:https://doi.org/10.1109/MC.2017.9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. M. Satyanarayanan and N. Davies. 2019. Augmenting cognition through edge computing. Computer 52, 7 (July 2019), 37–46.Google ScholarGoogle ScholarCross RefCross Ref
  128. Ragini Sharma, Saman Biookaghazadeh, and Ming Zhao. 2018. Are existing knowledge transfer techniques effective for deep learning on edge devices? In 27th International Symposium on High-performance Parallel and Distributed Computing (HPDC’18). ACM, New York, NY, 15–16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge computing: Vision and challenges. IEEE Internet Things J. 3 (2016), 637–646.Google ScholarGoogle ScholarCross RefCross Ref
  130. W. Shi and S. Dustdar. 2016. The promise of edge computing. Computer 49, 5 (May 2016), 78–81. DOI:https://doi.org/10.1109/MC.2016.145Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang. 2020. DRQ: Dynamic region-based quantization for deep neural network acceleration. In ACM/IEEE 47th International Symposium on Computer Architecture (ISCA). 1010–1021. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Flávio Souza, Diego de Las Casas, Vinícius Flores, SunBum Youn, Meeyoung Cha, Daniele Quercia, and Virgílio Almeida. 2015. Dawn of the Selfie Era: The Whos, Wheres, and Hows of Selfies on Instagram. arXiv:https://arxiv.org/abs/1510.05700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. IBM Research Editorial Staff. 2017. IBM scientists team with The Weather Company to bring edge computing to life. Retrieved from https://www.ibm.com/blogs/research/2017/02/bringing-edge-computing-to-life/.Google ScholarGoogle Scholar
  134. Rafael Stahl, Zhuoran Zhao, Daniel Mueller-Gritschneder, Andreas Gerstlauer, and Ulf Schlichtmann. 2019. Fully distributed deep learning inference on resource-constrained edge devices. In Embedded Computer Systems: Architectures, Modeling, and Simulation, Dionisios N. Pnevmatikatos, Maxime Pelcat, and Matthias Jung (Eds.). Springer International Publishing, Cham, 77–90.Google ScholarGoogle Scholar
  135. Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. Arxiv Eprints 1905.11946 (2019).Google ScholarGoogle Scholar
  136. B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, and Q. Yang. 2017. Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Trans. Industr. Inform. 13, 5 (Oct. 2017), 2140–2150.Google ScholarGoogle Scholar
  137. Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, Anima Singh, Ed H. Chi, and Sagar Jain. 2020. Understanding and improving knowledge distillation. Arxiv Eprints 2002.03532 (2020).Google ScholarGoogle Scholar
  138. Zeyi Tao and Qun Li. 2018. eSGD: Communication efficient distributed deep learning on the edge. In USENIX Workshop on Hot Topics in Edge Computing (HotEdge’18). USENIX Association. https://www.usenix.org/conference/hotedge18/presentation/tao.Google ScholarGoogle Scholar
  139. GreenWaves Technologies. 2018. GAP8 - GreenWaves. Retrieved from https://en.wikichip.org/wiki/greenwaves/gap8.Google ScholarGoogle Scholar
  140. GreenWaves Technologies. 2019. TF2GAP8. Retrieved from https://github.com/GreenWaves-Technologies/tf2gap8.Google ScholarGoogle Scholar
  141. S. Teerapittayanon, B. McDanel, and H. T. Kung. 2017. Distributed deep neural networks over the cloud, the edge and end devices. In IEEE 37th International Conference on Distributed Computing Systems (ICDCS). 328–339. DOI:https://doi.org/10.1109/ICDCS.2017.226Google ScholarGoogle Scholar
  142. Tom Simonite. 2019. The best algorithms struggle to recognize black faces equally. Retrieved from https://www.wired.com/story/best-algorithms-struggle-recognize-% black-faces-equally/.Google ScholarGoogle Scholar
  143. Shreshth Tuli, Nipam Basumatary, and Rajkumar Buyya. 2019. EdgeLens: Deep Learning based Object Detection in Integrated IoT, Fog and Cloud Computing Environments. arXiv:https://arxiv.org/abs/1906.11056.Google ScholarGoogle Scholar
  144. S. Ullah and D. Kim. 2020. Benchmarking Jetson platform for 3D point-cloud and hyper-spectral image classification. In IEEE International Conference on Big Data and Smart Computing (BigComp). 477–482.Google ScholarGoogle Scholar
  145. Sahar Voghoei, Navid Hashemi Tonekaboni, Jason G. Wallace, and Hamid Reza Arabnia. 2018. Deep learning at the edge. In International Conference on Computational Science and Computational Intelligence (CSCI). 895–901.Google ScholarGoogle ScholarCross RefCross Ref
  146. C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou. 2017. DLAU: A scalable deep learning accelerator unit on FPGA. IEEE Trans. Comput.-aided Des. Integ. Circ. Syst. 36, 3 (Mar. 2017), 513–517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang, and M. Satyanarayanan. 2018. Bandwidth-efficient live video analytics for drones via edge computing. In IEEE/ACM Symposium on Edge Computing (SEC). 159–173. DOI:https://doi.org/10.1109/SEC.2018.00019Google ScholarGoogle Scholar
  148. Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He, and Kevin S. Chan. 2018. When edge meets learning: Adaptive control for resource-constrained distributed machine learning. In IEEE Conference on Computer Communications. 63–71. DOI:https://doi.org/10.1109/INFOCOM.2018.8486403Google ScholarGoogle Scholar
  149. Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, and Xu Chen. 2020. Convergence of edge computing and deep learning: A comprehensive survey. IEEE Commun. Surv. Tutor. 22, 2 (2020), 869–904.Google ScholarGoogle ScholarCross RefCross Ref
  150. Sally Ward-Foxton. 2019. AI at the Very, Very Edge. Retrieved from https://www.eetimes.com/document.asp?doc_id=1334918.Google ScholarGoogle Scholar
  151. Pete Warden. 2018. Speech Commands: A Dataset for Limited-vocabulary Speech Recognition. arXiv:https://arxiv.org/abs/1804.03209.Google ScholarGoogle Scholar
  152. Matt Welsh. 2019. True AI on a Raspberry Pi, with no extra hardware. Retrieved from https://medium.com/@mdwdotla/true-ai-on-a-raspberry-pi-with-no-extra-hardware-dcdbff12d068.Google ScholarGoogle Scholar
  153. R. Xu, S. Y. Nikouei, Y. Chen, A. Polunchenko, S. Song, C. Deng, and T. R. Faughnan. 2018. Real-time human objects tracking for smart surveillance at the edge. In IEEE International Conference on Communications (ICC). 1–6. DOI:https://doi.org/10.1109/ICC.2018.8422970Google ScholarGoogle Scholar
  154. Zhuangdi Xu, Harshit Gupta, and Umakishore Ramachandran. 2018. STTR: A system for tracking all vehicles all the time at the edge of the network. In 12th ACM International Conference on Distributed and Event-based Systems (DEBS’18). ACM, New York, NY, 124–135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen Hu, Hung-Sheng Chang, and Hsiang-Pang Li. 2019. Sparse ReRAM engine: Joint exploration of activation and weight sparsity in compressed neural networks. In 46th International Symposium on Computer Architecture (ISCA’19). Association for Computing Machinery, New York, NY, 236–249. DOI:https://doi.org/10.1145/3307650.3322271 Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek F. Abdelzaher. 2017. Compressing deep neural network structures for sensing systems with a compressor-critic framework. arxiv:1706.01215.Google ScholarGoogle Scholar
  157. Mahmut Taha Yazici, Shadi Basurra, and Mohamed Medhat Gaber. 2018. Edge machine learning: Enabling smart internet of things applications. Big Data Cog. Comput. 2, 3 (2018), 26.Google ScholarGoogle ScholarCross RefCross Ref
  158. Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott Mahlke. 2017. Scalpel: Customizing DNN pruning to the underlying hardware parallelism. In 44th International Symposium on Computer Architecture (ISCA’17). Association for Computing Machinery, New York, NY, 548–560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. Qunsong Zeng, Yuqing Du, Kin K. Leung, and Kaibin Huang. 2019. Energy-efficient Radio Resource Allocation for Federated Edge Learning. arXiv:https://arxiv.org/abs/1907.06040.Google ScholarGoogle Scholar
  160. Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. 2019. Eager pruning: Algorithm and architecture support for fast training of deep neural networks. In 46th International Symposium on Computer Architecture (ISCA’19). Association for Computing Machinery, New York, NY, 292–303. DOI:https://doi.org/10.1145/3307650.3322263 Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Jianhao Zhang, Yingwei Pan, Ting Yao, He Zhao, and Tao Mei. 2019. daBNN: A super fast inference framework for binary neural networks on arm devices. In 27th ACM International Conference on Multimedia. 2272–2275. DOI:https://doi.org/10.1145/3343031.3350534 Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Xingzhou Zhang, Yifan Wang, and Weisong Shi. 2018. pCAMP: Performance comparison of machine learning packages on the edges. In USENIX Workshop on Hot Topics in Edge Computing (HotEdge’18). USENIX Association, Boston, MA. Retrieved from https://www.usenix.org/conference/hotedge18/presentation/zhang.Google ScholarGoogle Scholar
  163. X. Zhang, X. Zhou, M. Lin, and J. Sun. 2018. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6848–6856. DOI:https://doi.org/10.1109/CVPR.2018.00716Google ScholarGoogle ScholarCross RefCross Ref
  164. Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018. DeepThings: Distributed adaptive deep learning inference on resource-constrained IoT edge clusters. IEEE Trans. Comput.-aided Des. Integ. Circ. Syst. PP (10 2018), 1–1. DOI:https://doi.org/10.1109/TCAD.2018.2858384Google ScholarGoogle Scholar
  165. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. 2019. Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 8 (Aug. 2019), 1738–1762.Google ScholarGoogle ScholarCross RefCross Ref
  166. Guangxu Zhu, Dongzhu Liu, Yuqing Du, Changsheng You, Jun Zhang, and Kaibin Huang. 2018. Towards an Intelligent Edge: Wireless Communication Meets Machine Learning. arXiv:https://arxiv.org/abs/1809.00343.Google ScholarGoogle Scholar

Index Terms

  1. Machine Learning at the Network Edge: A Survey

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Computing Surveys
                ACM Computing Surveys  Volume 54, Issue 8
                November 2022
                754 pages
                ISSN:0360-0300
                EISSN:1557-7341
                DOI:10.1145/3481697
                Issue’s Table of Contents

                Copyright © 2021 Association for Computing Machinery.

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 4 October 2021
                • Accepted: 1 May 2021
                • Revised: 1 April 2021
                • Received: 1 October 2020
                Published in csur Volume 54, Issue 8

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • survey
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              HTML Format

              View this article in HTML Format .

              View HTML Format