skip to main content
10.1145/3472813.3472816acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmhiConference Proceedingsconference-collections
research-article

Assessment of proteinuria level in nephrology patients using a machine learning approach

Authors Info & Claims
Published:26 October 2021Publication History

ABSTRACT

Proteinuria represents an increase in the urinary excretion of proteins. It could also follow kidney transplantation and affects more than 40% of kidney transplant patients per year. It results from protein increases in their filtered load, due to alterations in the selectivity of the glomerular capillary wall, or from defects in their tubular uptake. Different parameters are associated with the various stages of proteinuria and therefore allow characterizing of its severity. For this purpose, the variation of proteinuria was evaluated by loading input two parameters: glycemia and the blood level of the m-Tor inhibitor. Through combination of data with different machine learning algorithms, the goal of this research work was to evaluate how blood glucose values and the use of immunosuppressive drugs can lead to prediction proteinuria classification in patients.

References

  1. P. Topham, ‘Proteinuric renal disease’, Clin. Med., vol. 9, no. 3, pp. 284–287, Jun. 2009, doi: 10.7861/clinmedicine.9-3-284.8Google ScholarGoogle ScholarCross RefCross Ref
  2. K. Zandi-Nejad, A. A. Eddy, R. J. Glassock, and B. M. Brenner, ‘Why is proteinuria an ominous biomarker of progressive kidney disease?’, Kidney Int., vol. 66, pp. S76–S89, Nov. 2004, doi: 10.1111/j.1523-1755.2004.09220.x.Google ScholarGoogle ScholarCross RefCross Ref
  3. B. A. Julian, H. Suzuki, Y. Suzuki, Y. Tomino, G. Spasovski, and J. Novak, ‘Sources of Urinary Proteins and their Analysis by Urinary Proteomics for the Detection of Biomarkers of Disease’, Proteomics Clin. Appl., vol. 3, no. 9, pp. 1029–1043, Aug. 2009, doi: 10.1002/prca.200800243Google ScholarGoogle ScholarCross RefCross Ref
  4. P. A. Peterson, P. E. Evrin, and I. Berggård, ‘Differentiation of glomerular, tubular, and normal proteinuria: determinations of urinary excretion of beta-2-macroglobulin, albumin, and total protein’, J. Clin. Invest., vol. 48, no. 7, pp. 1189–1198, Jul. 1969, doi: 10.1172/JCI106083.Google ScholarGoogle ScholarCross RefCross Ref
  5. W. A. Wilmer, B. H. Rovin, C. J. Hebert, S. V. Rao, K. Kumor, and L. A. Hebert, ‘Management of glomerular proteinuria: a commentary’, J. Am. Soc. Nephrol. JASN, vol. 14, no. 12, pp. 3217–3232, Dec. 2003, doi: 10.1097/01.asn.0000100145.27188.33.Google ScholarGoogle ScholarCross RefCross Ref
  6. W. J. Marshall, M. Lapsley, A. Day, and R. Ayling, Clinical Biochemistry E-Book: Metabolic and Clinical Aspects. Elsevier Health Sciences, 2014.Google ScholarGoogle Scholar
  7. L. A. Stevens and A. S. Levey, ‘Measurement of Kidney Function’, Med. Clin., vol. 89, no. 3, pp. 457–473, May 2005, doi: 10.1016/j.mcna.2004.11.009.Google ScholarGoogle Scholar
  8. J. Bamoulid , ‘Immunosuppression and Results in Renal Transplantation’, Eur. Urol. Suppl., vol. 15, no. 9, pp. 415–429, Dec. 2016, doi: 10.1016/j.eursup.2016.04.011.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Naesens, D. R. J. Kuypers, and M. Sarwal, ‘Calcineurin Inhibitor Nephrotoxicity’, Clin. J. Am. Soc. Nephrol., vol. 4, no. 2, pp. 481–508, Feb. 2009, doi: 10.2215/CJN.04800908.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. A. Lim, J. Kohli, and R. D. Bloom, ‘Immunosuppression for kidney transplantation: Where are we now and where are we going?’, Transplant. Rev. Orlando Fla, vol. 31, no. 1, pp. 10–17, Jan. 2017, doi: 10.1016/j.trre.2016.10.006.Google ScholarGoogle ScholarCross RefCross Ref
  11. V. Bumbea , ‘Long-term results in renal transplant patients with allograft dysfunction after switching from calcineurin inhibitors to sirolimus’, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. - Eur. Ren. Assoc., vol. 20, no. 11, pp. 2517–2523, Nov. 2005, doi: 10.1093/ndt/gfh957.Google ScholarGoogle Scholar
  12. M. L. Suárez Fernández and F. G-Cosío, ‘Causes and consequences of proteinuria following kidney transplantation’, Nefrol. Engl. Ed., vol. 31, no. 4, pp. 404–414, Jul. 2011, doi: 10.3265/Nefrologia.pre2011.May.10972.Google ScholarGoogle Scholar
  13. Y.-M. Jiang , ‘Effect of renin-angiotensin system inhibitors on survival in kidney transplant recipients: A systematic review and meta-analysis’, Kaohsiung J. Med. Sci., vol. 34, no. 1, pp. 1–13, Jan. 2018, doi: 10.1016/j.kjms.2017.07.007.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. Ponticelli and G. Graziani, ‘Proteinuria after kidney transplantation’, Transpl. Int. Off. J. Eur Soc. Organ Transplant., vol. 25, no. 9, pp. 909–917, Sep. 2012, doi: 10.1111/j.1432-2277.2012.01500.x.Google ScholarGoogle Scholar
  15. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group, ‘KDIGO clinical practice guideline for the care of kidney transplant recipients’, Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg., vol. 9 Suppl 3, pp. S1-155, Nov. 2009, doi: 10.1111/j.1600-6143.2009.02834.x.Google ScholarGoogle Scholar
  16. F.-Y. Hsu, F.-J. Lin, H.-T. Ou, S.-H. Huang, and C.-C. Wang, ‘Renoprotective Effect of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers in Diabetic Patients with Proteinuria’, Kidney Blood Press. Res., vol. 42, no. 2, pp. 358–368, 2017, doi: 10.1159/000477946.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Galle, ‘Reduction of proteinuria with angiotensin receptor blockers’, Nat. Clin. Pract. Cardiovasc. Med., vol. 5 Suppl 1, pp. S36-43, Jul. 2008, doi: 10.1038/ncpcardio0806.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. M. Ponsiglione , ‘A Six Sigma DMAIC methodology as a support tool for Health Technology Assessment of two antibiotics’, Math. Biosci. Eng., vol. 18, no. 4, Art. no. mbe-18-04-174, 2021, doi: 10.3934/mbe.2021174.Google ScholarGoogle Scholar
  19. R. Kaboré, M. C. Haller, J. Harambat, G. Heinze, and K. Leffondré, ‘Risk prediction models for graft failure in kidney transplantation: a systematic review’, Nephrol. Dial. Transplant., vol. 32, no. suppl_2, pp. ii68–ii76, Apr. 2017, doi: 10.1093/ndt/gfw405.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. A. Zenios, ‘Modeling the transplant waiting list: A queueing model with reneging’, Queueing Syst., vol. 31, no. 3, pp. 239–251, Jul. 1999, doi: 10.1023/A:1019162331525.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Improta , ‘Agile six sigma in healthcare: Case study at santobono pediatric hospital’, Int. J. Environ. Res. Public. Health, vol. 17, no. 3, 2020, doi: 10.3390/ijerph17031052.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Scala , ‘Lean Six Sigma Approach for Reducing Length of Hospital Stay for Patients with Femur Fracture in a University Hospital’, Int. J. Environ. Res. Public. Health, vol. 18, no. 6, Art. no. 6, Jan. 2021, doi: 10.3390/ijerph18062843.Google ScholarGoogle Scholar
  23. G. Improta, C. Ricciardi, A. Borrelli, A. D'alessandro, C. Verdoliva, and M. Cesarelli, ‘The application of six sigma to reduce the pre-operative length of hospital stay at the hospital Antonio Cardarelli’, Int. J. Lean Six Sigma, 2019, doi: 10.1108/IJLSS-02-2019-0014.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. Ricciardi, A. M. Ponsiglione, G. Converso, I. Santalucia, M. Triassi, and G. Improta, ‘Implementation and validation of a new method to model voluntary departures from emergency departments’, Math. Biosci. Eng., vol. 18, no. 1, Art. no. mbe-18-01-013, 2021, doi: 10.3934/mbe.2021013.Google ScholarGoogle Scholar
  25. G. Improta , ‘Evaluation of Medical Training Courses Satisfaction: Qualitative Analysis and Analytic Hierarchy Process’, in 8th European Medical and Biological Engineering Conference, Cham, 2021, pp. 518–526, doi: 10.1007/978-3-030-64610-3_59.Google ScholarGoogle ScholarCross RefCross Ref
  26. G. Converso, G. Improta, M. Mignano, and L. C. Santillo, ‘A simulation approach for agile production logic implementation in a hospital emergency unit’, in International Conference on Intelligent Software Methodologies, Tools, and Techniques, 2015, pp. 623–634.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. El-Baz, G. Gimel'farb, and M. A. El-Ghar, ‘Image analysis approach for identification of renal transplant rejection’, in 2008 19th International Conference on Pattern Recognition, Dec. 2008, pp. 1–4, doi: 10.1109/ICPR.2008.4761694.Google ScholarGoogle ScholarCross RefCross Ref
  28. G. Improta, C. Ricciardi, F. Amato, G. D'Addio, M. Cesarelli, and M. Romano, ‘Efficacy of machine learning in predicting the kind of delivery by cardiotocography’, in IFMBE Proc., 2020, vol. 76, pp. 793–799, doi: 10.1007/978-3-030-31635-8_95.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Romano, G. D'Addio, F. Clemente, A. M. Ponsiglione, G. Improta, and M. Cesarelli, ‘Symbolic dynamic and frequency analysis in foetal monitoring’, in 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jun. 2014, pp. 1–5, doi: 10.1109/MeMeA.2014.6860122.Google ScholarGoogle ScholarCross RefCross Ref
  30. T. A. Trunfio, A. Scala, A. D. Vecchia, A. Marra, and A. Borrelli, ‘Multiple Regression Model to Predict Length of Hospital Stay for Patients Undergoing Femur Fracture Surgery at “San Giovanni di Dio e Ruggi d'Aragona” University Hospital’, in 8th European Medical and Biological Engineering Conference, Cham, 2021, pp. 840–847, doi: 10.1007/978-3-030-64610-3_94.Google ScholarGoogle Scholar
  31. C. Thongprayoon , ‘Promises of Big Data and Artificial Intelligence in Nephrology and Transplantation’, J. Clin. Med., vol. 9, no. 4, Art. no. 4, Apr. 2020, doi: 10.3390/jcm9041107.Google ScholarGoogle Scholar
  32. G. D'Addio, C. Ricciardi, G. Improta, P. Bifulco, and M. Cesarelli, Feasibility of Machine Learning in Predicting Features Related to Congenital Nystagmus, vol. 76. Springer, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  33. T. R. Srinivas , ‘Big Data, Predictive Analytics, and Quality Improvement in Kidney Transplantation: A Proof of Concept’, Am. J. Transplant., vol. 17, no. 3, pp. 671–681, 2017, doi: https://doi.org/10.1111/ajt.14099.Google ScholarGoogle ScholarCross RefCross Ref
  34. A. Burlacu , ‘Using Artificial Intelligence Resources in Dialysis and Kidney Transplant Patients: A Literature Review’, BioMed Res. Int., vol. 2020, p. e9867872, Jun. 2020, doi: 10.1155/2020/9867872.Google ScholarGoogle Scholar
  35. J. Chang, C. Ronco, and M. H. Rosner, ‘Computerized decision support systems: improving patient safety in nephrology’, Nat. Rev. Nephrol., vol. 7, no. 6, pp. 348–355, Jun. 2011, doi: 10.1038/nrneph.2011.50.Google ScholarGoogle ScholarCross RefCross Ref
  36. C. Yang, G. Kong, L. Wang, L. Zhang, and M.-H. Zhao, ‘Big data in nephrology: Are we ready for the change?’, Nephrol. Carlton Vic, vol. 24, no. 11, pp. 1097–1102, Nov. 2019, doi: 10.1111/nep.13636.Google ScholarGoogle ScholarCross RefCross Ref
  37. G. Improta, V. Mazzella, D. Vecchione, S. Santini, and M. Triassi, ‘Fuzzy logic-based clinical decision support system for the evaluation of renal function in post-Transplant Patients’, J. Eval. Clin. Pract., vol. 26, no. 4, pp. 1224–1234, Aug. 2020, doi: 10.1111/jep.13302.Google ScholarGoogle ScholarCross RefCross Ref
  38. G. C. Viberti, D. Mackintosh, R. W. Bilous, J. C. Pickup, and H. Keen, ‘Proteinuria in diabetes mellitus: role of spontaneous and experimental variation of glycemia’, Kidney Int., vol. 21, no. 5, pp. 714–720, May 1982, doi: 10.1038/ki.1982.87.Google ScholarGoogle ScholarCross RefCross Ref
  39. R. J. MacIsaac, G. Jerums, and E. I. Ekinci, ‘Effects of glycaemic management on diabetic kidney disease’, World J. Diabetes, vol. 8, no. 5, pp. 172–186, May 2017, doi: 10.4239/wjd.v8.i5.172.Google ScholarGoogle ScholarCross RefCross Ref
  40. J. L. Gross, M. J. de Azevedo, S. P. Silveiro, L. H. Canani, M. L. Caramori, and T. Zelmanovitz, ‘Diabetic Nephropathy: Diagnosis, Prevention, and Treatment’, Diabetes Care, vol. 28, no. 1, pp. 164–176, Jan. 2005, doi: 10.2337/diacare.28.1.164.Google ScholarGoogle ScholarCross RefCross Ref
  41. J. Wang, Z. Xu, B. Chen, S. Zheng, P. Xia, and Y. Cai, ‘The role of sirolimus in proteinuria in diabetic nephropathy rats’, Iran. J. Basic Med. Sci., vol. 20, no. 12, pp. 1339–1344, Dec. 2017, doi: 10.22038/IJBMS.2017.9618.Google ScholarGoogle Scholar
  42. G. K. Rangan, ‘Sirolimus-associated proteinuria and renal dysfunction’, Drug Saf., vol. 29, no. 12, pp. 1153–1161, 2006, doi: 10.2165/00002018-200629120-00006.Google ScholarGoogle ScholarCross RefCross Ref
  43. G. Stallone , ‘Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm-associated proteins’, Transplantation, vol. 91, no. 9, pp. 997–1004, May 2011, doi: 10.1097/TP.0b013e318211d342.Google ScholarGoogle ScholarCross RefCross Ref
  1. Assessment of proteinuria level in nephrology patients using a machine learning approach

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICMHI '21: Proceedings of the 5th International Conference on Medical and Health Informatics
      May 2021
      347 pages
      ISBN:9781450389846
      DOI:10.1145/3472813

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 October 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format