skip to main content
research-article
Open Access

Advances in the quantum internet

Authors Info & Claims
Published:21 July 2022Publication History
Skip Abstract Section

Abstract

A deep dive into the quantum Internet's potential to transform and disrupt.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aaronson, S. and Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. In Proceedings of the 32nd Computational Complexity Conf. (2017), 22:1--22:67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574 (2019), 505--510 Google ScholarGoogle ScholarCross RefCross Ref
  3. Bennett, C.H. and Brassard, G. Quantum cryptography: Public-key distribution and coin tossing. In Proceedings of the IEEE Intern. Conf. on Computers, Systems and Signal Processing (1984), 175--179.Google ScholarGoogle Scholar
  4. Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters 121 (2018), 190502.Google ScholarGoogle ScholarCross RefCross Ref
  5. Building the first reliable Quantum Internet on top of Europe's glass fiber network. QUAPITAL (2020), https://quapital.eu/.Google ScholarGoogle Scholar
  6. Comandar, L.C. et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Applied Physics Letters 104 (2014), 021101.Google ScholarGoogle ScholarCross RefCross Ref
  7. Ekert, A.K. Quantum cryptography based on Bell's theorem. Physical Review Letters 121 (1991), 661--663.Google ScholarGoogle ScholarCross RefCross Ref
  8. Farhi, E., Goldstone, J., Gutmann, S., and Neven, H. Quantum algorithms for fixed qubit architectures. arXiv:1703.06199v1 (2017).Google ScholarGoogle Scholar
  9. Fröhlich, B. et al. Long-distance quantum key distribution secure against coherent attacks. Optica 4, 1 (2017), 16316.Google ScholarGoogle ScholarCross RefCross Ref
  10. Gambetta, J. IBM's roadmap for scaling quantum technology. IBM Research Blog (September 2020).Google ScholarGoogle Scholar
  11. Gonzalez, C. Cloud-based QC with Amazon Braket. Digitale Welt 5 (March 2021), 14--17.Google ScholarGoogle ScholarCross RefCross Ref
  12. Greenberger, D.M., Horne, M.A., and Zeilinger, A. Going beyond Bell's Theorem. In Bell's Theorem, Quantum Theory, and Conceptions of the Universe. M. Kafatos ed. (1989) Kluwer Dordrecht, 69--72. arXiv:0712.0921.Google ScholarGoogle Scholar
  13. Gyongyosi, L. and Imre, S. Opportunistic entanglement distribution for the quantum Internet. Nature Scientific Reports 9 (2019), 2219. Google ScholarGoogle ScholarCross RefCross Ref
  14. Gyongyosi, L., Imre, S., and Nguyen, H.V. A survey on quantum channel capacities. IEEE Communications and Surveys Tutor 99, 1 (2018), 1149--1205 Google ScholarGoogle ScholarCross RefCross Ref
  15. Harrow, A.W. and Montanaro, A. Quantum computational supremacy. Nature 549 (2017), 203--209.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526 (2015), 682--686.Google ScholarGoogle ScholarCross RefCross Ref
  17. Huang, D. et al. Long-distance continuous-variable quantum key distribution by controlling excess noise. Nature Scientific Reports 6 (2016), 19201. Google ScholarGoogle ScholarCross RefCross Ref
  18. Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nature Physics 11, 1 (2015), 37--42.Google ScholarGoogle ScholarCross RefCross Ref
  19. Humphreys, P. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558 (2018), 268--273.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jouget, P. et al. Experimental demonstration of long-distance continuous-variable quantum key distribution, Nature Photonics 7 (2013), 378381.Google ScholarGoogle Scholar
  21. Karinou, F. et al. Toward the integration of CV quantum key distribution in deployed optical networks. IEEE Photonics Technology Letters 30, 7 (2018), 650653.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kimble, H.J. The quantum Internet. Nature 453 (2008), 1023--1030.Google ScholarGoogle ScholarCross RefCross Ref
  23. Krisnanda, T. Distribution of quantum entanglement: Principles and applications. Ph.D. dissertation, Nanyang Technological University (2020). arXiv:2003.08657.Google ScholarGoogle Scholar
  24. Liao, S.K. et al. Satellite-to-ground quantum key distribution. Nature 549 (2017), 43--47.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lloyd, S. et al. Infrastructure for the quantum Internet. ACM SIGCOMM Computer Communication Review 34, 5 (2004), 20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lucamarini, M. et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 7705 (2018), 400--403.Google ScholarGoogle ScholarCross RefCross Ref
  27. Mao, Y. et al. Integrating quantum key distribution with classical communications in backbone fiber network. Optics Express 26, 5 (2018), 60106020.Google ScholarGoogle ScholarCross RefCross Ref
  28. Monroe, C. et al. The U.S. national quantum initiative: From act to action. Science 364, 6439 (2019), 440442.Google ScholarGoogle Scholar
  29. Muralidharan, S. et al. Ultrafast and fault-tolerant quantum communication across long distances. Physical Review Letters 112 (2014), 250501.Google ScholarGoogle ScholarCross RefCross Ref
  30. Noelleke, C. et al. Efficient teleportation between remote single-atom quantum memories. Physical Review Letters 110 (2013), 140403.Google ScholarGoogle ScholarCross RefCross Ref
  31. Pant, M. et al. Routing entanglement in the quantum Internet. npj Quantum Inf 5, 25 (2019) Google ScholarGoogle ScholarCross RefCross Ref
  32. Pirandola, S. and Braunstein, S.L. Unite to build a quantum internet. Nature 532 (2016), 169--171.Google ScholarGoogle ScholarCross RefCross Ref
  33. Pirandola, S. et al. Advances in quantum cryptography. In Advances in Optics and Photonics (2020) Google ScholarGoogle ScholarCross RefCross Ref
  34. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2 (2018), 79.Google ScholarGoogle ScholarCross RefCross Ref
  35. Quantum Internet Research Group (2018), https://datatracker.ietf.org/rg/qirg/about/.Google ScholarGoogle Scholar
  36. Quantum manifesto: A new era of technology. Quantum Flagship (2016), https://qt.eu/app/uploads/2018/04/93056_Quantum-Manifesto_WEB.pdfGoogle ScholarGoogle Scholar
  37. Quantum Technologies Flagship kicks off with first 20 projects. European Commission (2020), https://ec.europa.eu/commission/presscorner/detail/de/MEMO_18_6241.Google ScholarGoogle Scholar
  38. Quantum technologies in space. QTSPACE. http://www.qtspace.eu/.Google ScholarGoogle Scholar
  39. Ren, J.G. et al. Ground-to-satellite quantum teleportation. Nature 549 (2017), 70--73.Google ScholarGoogle ScholarCross RefCross Ref
  40. Rosenberg, D. et al. Long-distance decoy-state quantum key distribution in optical fiber. Physical Review Letters 98 (2007), 010503.Google ScholarGoogle ScholarCross RefCross Ref
  41. Rozpedek, F. et al. Optimizing practical entanglement distillation. Physical Review A 97 (2018), 062333.Google ScholarGoogle ScholarCross RefCross Ref
  42. Sangouard, N. et al. Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics 83 (2011), 33.Google ScholarGoogle ScholarCross RefCross Ref
  43. The future is quantum: EU countries plan ultra-secure communication network. European Commission (2020), https://digital-strategy.ec.europa.eu/en/news/future-quantum-eu-countries-plan-ultra-secure-communication-network.Google ScholarGoogle Scholar
  44. Truly secure quantum communication is here. OPENQKD (2020), https://openqkd.eu/.Google ScholarGoogle Scholar
  45. Van Meter, R. Quantum Networking, John Wiley and Sons Ltd., Hoboken, NJ, 2014, ISBN 1118648927, 9781118648926.Google ScholarGoogle Scholar
  46. Wang, L.J. et al. Long-distance co-propagation of quantum key distribution and terabit classical optical data channels. Physical Review A 95, 1 (2017), 012301.Google ScholarGoogle Scholar
  47. Wehner, S. et al. Quantum internet: A vision for the road ahead. Science 362 (2018), 6412.Google ScholarGoogle ScholarCross RefCross Ref
  48. Yin, H.L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters 117 (2016), 190501.Google ScholarGoogle ScholarCross RefCross Ref
  49. Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582 (2020), 501.Google ScholarGoogle ScholarCross RefCross Ref
  50. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356 (2017), 1140.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zhang, Y. et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Physical Review Letters 125 (2020), 010502.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Advances in the quantum internet

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image Communications of the ACM
              Communications of the ACM  Volume 65, Issue 8
              August 2022
              91 pages
              ISSN:0001-0782
              EISSN:1557-7317
              DOI:10.1145/3550455
              • Editor:
              • James Larus
              Issue’s Table of Contents

              Copyright © 2022 Owner/Author

              This work is licensed under a Creative Commons Attribution International 4.0 License.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 21 July 2022

              Check for updates

              Qualifiers

              • research-article
              • Popular
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format