skip to main content
article
Free Access

Support vector machines: hype or hallelujah?

Authors Info & Claims
Published:01 December 2000Publication History
First page image

References

  1. {1} Barabino N., Pallavicini M., Petrolini A., Pontil M. and Verri A. Support vector machines vs multi-layer perceptrons in particle identification. In Proceedings of the European Symposium on Artifical Neural Networks '99 (D-Facto Press, Belgium), p. 257-262, 1999.Google ScholarGoogle Scholar
  2. {2} Bennett K. and Bredensteiner E. Geometry in Learning, in Geometry at Work, C. Gorini Editor, Mathematical Association of America, Washington D. C., 132-145, 2000.Google ScholarGoogle Scholar
  3. {3} Bennett K. and Bredensteiner E. Duality and Geometry in SVMs. In P. Langley editor, Proc. of 17th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, 65-72, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {4} Bennett K., Dermiriz A. and Shawe-Taylor J. A Column Generation Algorithm for Boosting. In P. Langley editor, Proc. of 17th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, 57-64, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {5} Bennett K., Wu D. and Auslender L. On support vector decision trees for database marketing. Research Report No. 98-100, Rensselaer Polytechnic Institute, Troy, NY, 1998.Google ScholarGoogle Scholar
  6. {6} Bradley P., Mangasarian O. and Musicant, D. Optimization in Massive Datasets. To appear in Abello, J., Pardalos P., Resende, M (eds), Handbook of Massive Datasets, Kluwer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {7} Brown M., Grundy W., D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares Jr. D. Haussler. Knowledge-based Analysis of Microarray Gene Expression Data using Support Vector Machines. Proceedings of the National Academy of Sciences, 97 (1), p. 262-267, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  8. {8} Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, p. 121-167, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {9} Campbell C. and Bennett K. A Linear Programming Approach to Novelty Detection. To appear in Advances in Neural Information Processing Systems 14 (Morgan Kaufmann, 2001).Google ScholarGoogle Scholar
  10. {10} Chapelle O. and Vapnik V. Model selection for support vector machines. To appear in Advances in Neural Information Processing Systems, 12, ed. S. A. Solla, T. K. Leen and K.-R. Muller, MIT Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {11} Cortes C. and Vapnik V. Support vector networks. Machine Learning 20, p. 273-297, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {12} Crisp D. and Burges C. A geometric interpretation of v-svm classifiers. Advances in Neural Information Processing Systems, 12, ed. S. A. Solla, T. K. Leen and K.-R. Muller, MIT Press, 2000.Google ScholarGoogle Scholar
  13. {13} Cristianini N., Campbell C. and Shawe-Taylor, J. Dynamically adapting kernels in support vector machines. Advances in Neural Information Processing Systems, 11, ed. M. Kearns, S. A. Solla, and D. Cohn, MIT Press, p. 204-210, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {14} Cristianini N. and Shawe-Taylor J. An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, 2000. www.support-vector.net. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {15} Collobert R. and Bengio S. SVMTorch web page, http://www.idiap.ch/learning/SVMTorch.htmlGoogle ScholarGoogle Scholar
  16. {16} DeCoste D. and Scholkopf B. Training Invariant Support Vector Machines. To appear in Machine Learning (Kluwer, 2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {17} Drucker H., with Wu D. and Vapnik V. Support vector machines for spam categorization. IEEE Trans. on Neural Networks, 10, p. 1048-1054. 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {18} Drucker H., Burges C., Kaufman L., Smola A. and Vapnik V. Support vector regression machines. In: M. Mozer, M. Jordan, and T. Petsche (eds.). Advances in Neural Information Processing Systems, 9, MIT Press, Cambridge, MA, 1997.Google ScholarGoogle Scholar
  19. {19} Dumais S., Platt J., Heckerman D. and Sahami M. Inductive Learning Algorithms and Representations for Text Categorization. 7th International Conference on Information and Knowledge Management, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {20} Fernandez R. and Viennet E. Face identification using support vector machines. Proceedings of the European Symposium on Artificial Neural Networks (ESANN99), (D.- Facto Press, Brussels) p. 195-200, 1999.Google ScholarGoogle Scholar
  21. {21} Ferris, M. and Munson T. Semi-smooth support vector machines. Data Mining Institute Technical Report 00-09, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.Google ScholarGoogle Scholar
  22. {22} Ferris M. and Munson T. Interior point methods for massive support vector machines. Data Mining Institute Technical Report 00-05, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2000.Google ScholarGoogle Scholar
  23. {23} Friess T.-T., Cristianini N. and Campbell, C. The kernel adatron algorithm: a fast and simple learning procedure for support vector machines. 15th Intl. Conf. Machine Learning, Morgan Kaufman Publishers, p. 188-196, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {24} Furey T., Cristianini N., Duffy N., Bednarski D., Schummer M. and Haussler D. Support Vector Machine Classification and Validation of Cancer Tissue Samples using Microarray Expression Data. Bioinformatics 16 p. 906-914, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  25. {25} Golub T., Slonim D., Tamayo P., Huard C., Gassenbeek M., Mesirov J., Coller H., Loh M., Downing J., Caligiuri M., Bloomfield C. and Lander E. Modecular Classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286 p. 531-537, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  26. {26} Guyon I., Matic N. and Vapnik V. Discovering informative patterns and data cleaning. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, MIT Press, p. 181- 203, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {27} Guyon, I Web page on SVM Applications, http://www.clopinet.com/isabelle/Projects/SVM/applist.htmlGoogle ScholarGoogle Scholar
  28. {28} Jaakkola T., Diekhans M. and Haussler, D. A discriminative framework for detecting remote protein homologies. MIT Preprint, 1999.Google ScholarGoogle Scholar
  29. {29} Joachims, T. Text categorization with support vector machines: learning with many relevant features. Proc. European Conference on Machine Learning (ECML), 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. {30} Joachims, T. Estimating the Generalization Performance of an SVM efficiently. In Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann,. 431-438, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {31} Joachims, T. Text categorization with support vector machines: learning with many relevant features. Proc. European Conference on Machine Learning (ECML), 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. {32} Joachims, T. Web Page on SVMLight: http://www.ai.cs.uni-dortmund.de /SOFTWARE/SVM_LIGHT/svm_light.eng.htmlGoogle ScholarGoogle Scholar
  33. {33} Keerthi S., Shevade S., Bhattacharyya C. and Murthy, K. Improvements to Platt's SMO algorithm for SVM classifier design. Tech Report, Dept. of CSA, Banglore, India, 1999.Google ScholarGoogle Scholar
  34. {34} Keerthi S., Shevade, S., Bhattacharyya C. and Murthy, K. A. Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design, Techical Report TR-ISL-99-03, Intelligent Systems Lab, Dept of Computer Science and Automation, Indian Institute of Science, Bangalore, India, (accepted for publication in IEEE Transaction on Neural Networks) 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. {35} Luenberger, D. Linear and Nonlinear Programming. Addison-Wesley, 1984.Google ScholarGoogle Scholar
  36. {36} Mangasarian, O. and Musicant D. Massive Support Vector Regression Data mining Institute Technical Report 99-02, Dept of Computer Science, University of Wisconsin-Madison, August 1999.Google ScholarGoogle Scholar
  37. {37} Mangasarian, O. and Musicant D. Lagrangian Support Vector Regression Data mining Institute Technical Report 00-06, June 2000.Google ScholarGoogle Scholar
  38. {38} Mukherjee S., Tamayo P., Slonim D., Verri A., Golub T., Mesirov J. and Poggio T. Support Vector Machine Classification of Microarray Data, MIT AI Memo No. 1677 and MIT CBCL Paper No. 182.Google ScholarGoogle Scholar
  39. {39} ORL dataset: Olivetti Research Laboratory, 1994,. http://www.uk.research.att.com/facedatabase.htmlGoogle ScholarGoogle Scholar
  40. {40} Osuna E., Freund R. and Girosi F. Training Support Vector Machines: an Application to Face Detection. Proceedings of CVPR'97, Puerto Rico, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. {41} Osuna E., Freund R. and Girosi F. Proc. of IEEE NNSP, Amelia Island, FL p. 24-26, 1997.Google ScholarGoogle Scholar
  42. {42} Osuna E. and Girosi F. Reducing the Run-time Complexity in Support Vector Machines. In B. Scholkopf, C. Burges and A. Smola (ed.), Advances in Kernel Methods: Support Vector Learning, MIT press, Cambridge, MA, p. 271-284, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. {43} Platt J. Fast training of SVMs using sequential minimal optimization. In B. Scholkopf, C. Burges and A. Smola (ed.), Advances in Kernel Methods: Support Vector Learning, MIT press, Cambridge, MA, p. 185-208, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. {44} Papageorgiou C., Oren M. and Poggio, T. A General Framework for Object Detection. Proceedings of International Conference on Computer Vision, p. 555-562, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. {45} Raetsch G., Demiriz A., and Bennett K. Sparse regression ensembles in infinite and finite hypothesis space. NeuroCOLT2 technical report, Royal Holloway College, London, September, 2000.Google ScholarGoogle Scholar
  46. {46} Rychetsky M., Ortmann, S. and Glesner, M. Support Vector Approaches for Engine Knock Detection. Proc. International Joint Conference on Neural Networks (IJCNN 99), July, 1999, Washington, USA.Google ScholarGoogle ScholarCross RefCross Ref
  47. {47} Roobaert D. Improving the Generalization of Linear Support Vector Machines: an Application to 3D Object Recognition with Cluttered Background. Proc. Workshop on Support Vector Machines at the 16th International Joint Conference on Artificial Intelligence, July 31-August 6, Stockholm, Sweden, p. 29-33 1999.Google ScholarGoogle Scholar
  48. {48} Scholkopf B., Bartlett P., Smola A. and Williamson R. Support vector regression with automatic accuracy control. In L. Niklasson, M. Boden and T. Ziemke, editors, Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing, Berlin, Springer Verlag, 1998.Google ScholarGoogle Scholar
  49. {49} Scholkopf B., Bartlett P., Smola A., and Williamson R. Shrinking the Tube: A New Support Vector Regression Algorithm. To appear in: M. S. Kearns, S. A. Solla, and D. A. Cohn (eds.), Advances in Neural Information Processing Systems, 11, MIT Press, Cambridge, MA, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. {50} Scholkopf B., Burges C. and Smola A. Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge, MA. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. {51} Scholkopf B., Platt J. C., Shawe-Taylor J., Smola A. J., Williamson R. C. Estimating the support of a high-dimensional distribution. Microsoft Research Corporation Technical Report MSR-TR-99-87, 1999.Google ScholarGoogle Scholar
  52. {52} Scholkopf B., Shawe-Taylor J., Smola A. and Williamson R. Kernel-dependent support vector error bounds. Ninth International Conference on Artificial Neural Networks, IEE Conference Publications No. 470, p. 304-309, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  53. {53} Scholkopf B., Smola A., and Muller, K.-R., Kernel principal component analysis. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999b. 327-352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. {54} Scholkopf B., Smola A., Williamson R., and Bartlett P. New support vector algorithms. To appear in Neural Computation, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. {55} Scholkopf, B., Sung, K., Burges C., Girosi F., Niyogi P., Poggio T. and Vapnik V. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. IEEE Transactions on Signal Processing, 45, p. 2758-2765, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. {56} Smola A., Bartlett P., Scholkopf B. and Schuurmans C. (eds), Advances in Large Margin Classifiers, Chapter 2, MIT Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. {57} Shawe-Taylor J. and Cristianini N. Margin distribution and soft margin. In A. Smola, P. Barlett, B. Scholkopf and C. Schuurmans (eds), Advances in Large Margin Classifiers, Chapter 2, MIT Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. {58} Smola A. and Scholkopf B. A tutorial on support vector regression. NeuroColt2 TR 1998-03, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. {59} Smola A. and Scholkopf B. From Regularization Operators to Support Vector Kernels. In: M. Mozer, M. Jordan, and T. Petsche (eds). Advances in Neural Information Processing Systems, 9, MIT Press, Cambridge, MA, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. {60} Smola A., Scholkopf B. and Muller K.-R. The connection between regulafisation operators and support vector kernels. Neural Networks, 11 p. 637-649, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. {61} Smola A., Williamson R., Mika S., and Scholkopf B. Regularized principal manifolds. In Computational Learning Theory: 4th European Conference, volume 1572 of Lecture Notes in Artificial Intelligence (Springer), p. 214-229, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  62. {62} Tax D. and Duin R. Data domain description by Support Vectors. In Proceedings of ESANN99, ed. M Verleysen, D. Facto Press, Brussels, p. 251-256, 1999.Google ScholarGoogle Scholar
  63. {63} Tax D., Ypma A., and Duin R., Support vector data description applied to machine vibration analysis. In: M. Boasson, J. Kaandorp, J. Tonino, M. Vosselman (eds.), Proc. 5th Annual Conference of the Advanced School for Computing and Imaging (Heijen, NL, June 15-17), 1999, 398-405.Google ScholarGoogle Scholar
  64. {64} http://www.ics.uci.edu/mlearn/MLRepository.htmlGoogle ScholarGoogle Scholar
  65. {65} Vapnik, V. The Nature of Statistical Learning Theory. Springer, New York, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. {66} Vapnik, V. Statistical Learning Theory. Wiley, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. {67} Weston, J. Gammerman, A., Stitson, M., Vapnik, V., Vovk, V. and Watkins, C. Support Vector Density Estimation. In B. Scholkopf, C. Burges and A. Smola. Advances in Kernel Methods: Support Vector Machines. MIT Press, cambridge, M. A. p. 293-306, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. {68} Vapnik, V. and Chapelle, O. Bounds on error expectation for Support Vector Machines. Submitted to Neural Computation, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. {69} Weston J., Mukherjee, Chapelle, Pontil M., Poggio T., and Vapnik V. Feature Selection for SVMs. To appear in Advances in Neural Information Processing Systems 14 (Morgan Kaufmann, 2001).Google ScholarGoogle Scholar
  70. {70} http://kernel-machines.org/Google ScholarGoogle Scholar
  71. {71} Zien A., Ratsch G., Mika S., Scholkopf B., Lemmen C., Smola A., Lengauer T. and Muller K.-R. Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites. Presented at the German Conference on Bioinformatics, 1999.Google ScholarGoogle Scholar

Index Terms

  1. Support vector machines: hype or hallelujah?

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader