skip to main content
article

MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs

Published:01 June 2003Publication History
Skip Abstract Section

Abstract

MATCONT is a graphical MATLAB software package for the interactive numerical study of dynamical systems. It allows one to compute curves of equilibria, limit points, Hopf points, limit cycles, period doubling bifurcation points of limit cycles, and fold bifurcation points of limit cycles. All curves are computed by the same function that implements a prediction-correction continuation algorithm based on the Moore-Penrose matrix pseudo-inverse. The continuation of bifurcation points of equilibria and limit cycles is based on bordering methods and minimally extended systems. Hence no additional unknowns such as singular vectors and eigenvectors are used and no artificial sparsity in the systems is created. The sparsity of the discretized systems for the computation of limit cycles and their bifurcation points is exploited by using the standard Matlab sparse matrix methods. The MATLAB environment makes the standard MATLAB Ordinary Differential Equations (ODE) Suite interactively available and provides computational and visualization tools; it also eliminates the compilation stage and so makes installation straightforward. Compared to other packages such as AUTO and CONTENT, adding a new type of curves is easy in the MATLAB environment. We illustrate this by a detailed description of the limit point curve type.

References

  1. Allgower, E. L. and Georg, K. 1996. Numerical path following. In Handbook of Numerical Analysis 5, P. G. Ciarlet and J. L. Lions, Eds. North-Holland, Amsterdam, The Neatherlands.Google ScholarGoogle Scholar
  2. Arnold, D. and Polking, J. C. 1999. Ordinary Differential Equations using MATLAB, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. Google ScholarGoogle Scholar
  3. Ascher, U. M., Christiansen, J., and Russell, R. D. 1979. A collocation solver for mixed order systems of boundary value problems. Math. Comp. 33, 146, 659--679.Google ScholarGoogle Scholar
  4. Back, A., Guckenheimer, J., Myers, M. R., Wicklin, F. J., and Worfolk, P. A. 1992. Dstool: Computer assisted exploration of dynamical systems. Notices Amer. Math. Soc. 39, April, 303--309.Google ScholarGoogle Scholar
  5. Beyn, W.-J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Yu. A., and Sandstede, B. 2002. Numerical continuation, and computation of normal forms. In Handbook of Dynamical Systems, Vol. II, B. Fiedler, ed. Elsevier, Amsterdam, The Netherlands, 149--219.Google ScholarGoogle Scholar
  6. Choe, W. G. and Guckenheimer, J. 2000. Using dynamical system tools in MATLAB. In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, IMA Vol. 119, E. J. Doedel and L. S. Tuckerman, Eds. Springer, New York, NY. 85--113.Google ScholarGoogle Scholar
  7. De Boor, C. and Swartz, B. 1973. Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 4, 582--606.Google ScholarGoogle Scholar
  8. De Feo, O. 2000. MPLAUT: A MATLAB visualization software for AUTO97. EPFL, Lausanne, Switzerland. Available at http://www.math.uu.nl/people/kuznet/cm.Google ScholarGoogle Scholar
  9. Dhooge, A., Govaerts, W., Kuznetsov, Yu. A., Mestrom, W., and Riet, A. 2000--2002. CL_MATCONT: A Continuation Toolbox in MATLAB. In Proceedings of the 2003 ACM Symposium on Applied Computing (Melbourne, FL), 161--166. Software available at: http://www.math.uu.nl/people/kuznet/cm. Google ScholarGoogle Scholar
  10. Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Sandstede, B., and Wang, X. J. 1997. AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont), user's guide. Concordia University, Montreal, P.Q., Canada. Available at http://indy.cs.concordia.ca.Google ScholarGoogle Scholar
  11. Doedel, E., Govaerts, W., and Kuznetsov, Yu. A. 2003. Computation of periodic solution bifurcations in ODEs using bordered systems. SIAM J. Numer. Anal. To appear. Google ScholarGoogle Scholar
  12. Doedel, E. J., Keller, H. B., and Kernévez, J. P. 1991. Numerical analysis and control of bifurcation problems I : Bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 3, 493--520.Google ScholarGoogle Scholar
  13. Engelborghs, K., Luzyanina, T., and Roose, D. 2002. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28, 1, 1--21. Google ScholarGoogle Scholar
  14. Ermentrout, B. 2002. Simulating, Analyzing and Animating Dynamical Systems, a Guide to XPPAUT for Researchers and Students. SIAM Publications, Philadelphia, PA. Google ScholarGoogle Scholar
  15. Govaerts, W., Kuznetsov, Yu. A., and Sijnave, B. 1998. Implementation of Hopf and double Hopf continuation using bordering methods. ACM Trans. Math. Softw. 24, 4, 418--436. Google ScholarGoogle Scholar
  16. Govaerts, W. 2000. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM Publications, Philadelphia, PA. Google ScholarGoogle Scholar
  17. Guckenheimer, J. and Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences 42. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  18. Henderson, M. 2002. Multiple parameter continuation: Computing implicitly defined k-manifolds. Int. J. Bifurcation Chaos 12, 3 451--476.Google ScholarGoogle Scholar
  19. Keller, H. B. 1977. Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory. Academic Press, New York, NY., 359--384.Google ScholarGoogle Scholar
  20. Khibnik, A. I., Kuznetsov, Yu. A., Levitin, V. V., and Nikolaev, E. V. 1993. Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D 62, 1--4, 360--371. Google ScholarGoogle Scholar
  21. Kuznetsov, Yu. A. 1995/1998. Elements of Applied Bifurcation Theory, Applied Mathematical Sciences 112. Springer-Verlag, New York, NY. Google ScholarGoogle Scholar
  22. Kuznetsov, Yu. A. and Levitin, V. V. 1995--1997. content: A multiplatform environment for analyzing dynamical systems. Dynamical Systems Laboratory, CWI, Amsterdam, The Netherlands. Available at ftp.cwi.nl/pub/CONTENT.Google ScholarGoogle Scholar
  23. Mestrom, W. 2002. Continuation of limit cycles in MATLAB. Master's thesis. Mathematical Institute, Utrecht University, Utrecht, The Netherlands.Google ScholarGoogle Scholar
  24. Polking, J. C. 1997--2003. dfield and pplane software. Available at http://math.rice.edu/∼dfield.Google ScholarGoogle Scholar
  25. Riet, A. 2000. A continuation toolbox in MATLAB. Master's thesis. Mathematical Institute, Utrecht University, Utrecht, The Netherlands.Google ScholarGoogle Scholar
  26. Russell, R. D. and Christiansen, J. 1978. Adaptive mesh selection strategies for solving boundary value problems. SIAM J. Numer. Anal. 15, 1, 59--80.Google ScholarGoogle Scholar
  27. Shampine, L. F. and Reichelt, M. W. 1997. The MATLAB ODE suite. SIAM J. Sci. Compt. 18, 1, 1--22. Google ScholarGoogle Scholar

Index Terms

  1. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Mathematical Software
          ACM Transactions on Mathematical Software  Volume 29, Issue 2
          June 2003
          149 pages
          ISSN:0098-3500
          EISSN:1557-7295
          DOI:10.1145/779359
          Issue’s Table of Contents

          Copyright © 2003 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 June 2003
          Published in toms Volume 29, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader