skip to main content
article

Behavior of the NORTA method for correlated random vector generation as the dimension increases

Published:01 July 2003Publication History
Skip Abstract Section

Abstract

The NORTA method is a fast general-purpose method for generating samples of a random vector with given marginal distributions and given correlation matrix. It is known that there exist marginal distributions and correlation matrices that the NORTA method cannot match, even though a random vector with the prescribed qualities exists. We investigate this problem as the dimension of the random vector increases. Simulation results show that the problem rapidly becomes acute, in the sense that NORTA fails to work with an increasingly large proportion of correlation matrices. Simulation results also show that if one is willing to settle for a correlation matrix that is "close" to the desired one, then NORTA performs well with increasing dimension. As part of our analysis, we develop a method for sampling correlation matrices uniformly (in a certain precise sense) from the set of all such matrices. This procedure can be used more generally for sampling uniformly from the space of all symmetric positive definite matrices with diagonal elements fixed at positive values.

References

  1. Alfakih, A. and Wolkowicz, H. 2000. Matrix completion problems. In Handbook of Semidefinite Programming: Theory, Algorithms and Applications, H. Wolkowicz, R. Saigal, and L. Vandenberghe, Eds. Kluwer, Boston, Mass. 533--545.Google ScholarGoogle Scholar
  2. Cario, M. C. and Nelson, B. L. 1997. Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Tech. Rep., Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Ill.Google ScholarGoogle Scholar
  3. Clemen, R. T. and Reilly, T. 1999. Correlations and copulas for decision and risk analysis. Manage. Sci. 45, 208--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Das, S. R., Fong, G., and Geng, G. 2001. Impact of correlated default risk on credit portfolios. J. Fixed Inc. 11, 3, 9--19.Google ScholarGoogle ScholarCross RefCross Ref
  5. Devroye, L. 1986. Non-uniform Random Variate Generation. Springer-Verlag, New York.Google ScholarGoogle Scholar
  6. Edelman, A. 1989. Eigenvalues and condition numbers of random matrices. Ph.D. dissertation, Dep. Mathematics, MIT, Cambridge, Mass.Google ScholarGoogle Scholar
  7. Frobenius, F. G. 1968. Gessammelte Abhandlungen. Vol. 3. Springer, Berlin, Germany.Google ScholarGoogle Scholar
  8. Ghosh, S. and Henderson, S. G. 2001. Chessboard distributions. In Proceedings of the 2001 Winter Simulation Conference, B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, Eds. IEEE, Piscataway, N.J., 385--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ghosh, S. and Henderson, S. G. 2002a. Chessboard distributions and random vectors with specified marginals and covariance matrix. Oper. Res. 50, 5, 820--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ghosh, S. and Henderson, S. G. 2002b. Properties of the NORTA method in higher dimensions. In Proceedings of the 2002 Winter Simulation Conference, E. Yücesan, C. H. Chen, J. L. Snowdon, and J. M. Charnes, Eds. IEEE, Piscataway, N.J., 263--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Guttman, L. 1946. Enlargement methods for computing the inverse matrix. Ann. Math. Stat. 17, 336--343.Google ScholarGoogle ScholarCross RefCross Ref
  12. Henderson, S. G. 2001. Mathematics for simulation. In Proceedings of the 2001 Winter Simulation Conference, B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, Eds. IEEE, Piscataway, N.J., 83--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Henderson, S. G., Chiera, B. A., and Cooke, R. M. 2000. Generating "dependent" quasi-random numbers. In Proceedings of the 2000 Winter Simulation Conference, J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, Eds. IEEE, Piscataway, N.J., 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hill, R. R. and Reilly, C. H. 2000. The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance. Manage. Sci. 46, 302--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Iman, R. and Conover, W. 1982. A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simulat. Comput. 11, 311--334.Google ScholarGoogle ScholarCross RefCross Ref
  16. Joe, H. 1997. Multivariate Models and Dependence Concepts. Chapman & Hall, London, England.Google ScholarGoogle Scholar
  17. Johnson, C. R. 1990. Matrix completion problems: A survey. Proc. Symp. Appl. Math. 40, 171--198.Google ScholarGoogle ScholarCross RefCross Ref
  18. Johnson, M. E. 1987. Multivariate Statistical Simulation. Wiley, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kendall, M. G. 1961. A Course in the Geometry of n Dimensions. Charles Griffin and Co., London, England.Google ScholarGoogle Scholar
  20. Kruskal, W. 1958. Ordinal measures of associaton. J. Amer. Stat. Assoc. 53, 814--861.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kurowicka, D. and Cooke, R. M. 2001. Conditional, partial and rank correlation for the elliptical copula; Dependence modelling in uncertainty analysis. Tech. Rep., Delft University of Technology, Mekelweg 4, 2628CD Delft, Netherlands.Google ScholarGoogle Scholar
  22. Law, A. M. and Kelton, W. D. 2000. Simulation Modeling and Analysis, 3rd ed. McGraw-Hill, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, S. T. and Hammond, J. L. 1975. Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients. IEEE Trans. Syst. Man, and Cybernet. 5, 557--561.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lurie, P. M. and Goldberg, M. S. 1998. An approximate method for sampling correlated random variables from partially-specified distributions. Manage. Sci. 44, 203--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mardia, K. V. 1970. A translation family of bivariate distributions and Fréchet's bounds. Sankhya A32, 119--122.Google ScholarGoogle Scholar
  26. Marsaglia, G. and Olkin, I. 1984. Generating correlation matrices. SIAM J. Sci. Stat. Comput. 5, 470--475.Google ScholarGoogle ScholarCross RefCross Ref
  27. Ouellette, D. V. 1981. Schur complements and statistics. Lin. Alg. Appl. 36, 187--295.Google ScholarGoogle ScholarCross RefCross Ref
  28. Schmeiser, B. and Lal, R. 1982. Bivariate gamma random vectors. Oper. Res. 30, 355--374.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Whitt, W. 1976. Bivariate distributions with given marginals. Ann. Stat. 4, 1280--1289.Google ScholarGoogle ScholarCross RefCross Ref
  30. Wolkowicz, H., Saigal, R., and Vandenberghe, L., Eds. 2000. Handbook of Semidefinite Programming: Theory, Algorithms and Applications. Kluwer, Boston, Mass.Google ScholarGoogle Scholar

Index Terms

  1. Behavior of the NORTA method for correlated random vector generation as the dimension increases

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 13, Issue 3
      July 2003
      84 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/937332
      Issue’s Table of Contents

      Copyright © 2003 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2003
      Published in tomacs Volume 13, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader