skip to main content

Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization

Authors Info & Claims
Published:01 December 2003Publication History
Skip Abstract Section

Abstract

A procedure for generating non-differentiable, continuously differentiable, and twice continuously differentiable classes of test functions for multiextremal multidimensional box-constrained global optimization is presented. Each test class consists of 100 functions. Test functions are generated by defining a convex quadratic function systematically distorted by polynomials in order to introduce local minima. To determine a class, the user defines the following parameters: (i) problem dimension, (ii) number of local minima, (iii) value of the global minimum, (iv) radius of the attraction region of the global minimizer, (v) distance from the global minimizer to the vertex of the quadratic function. Then, all other necessary parameters are generated randomly for all 100 functions of the class. Full information about each test function including locations and values of all local minima is supplied to the user. Partial derivatives are also generated where possible.

Skip Supplemental Material Section

Supplemental Material

References

  1. Ali, M. M., Khompatraporn, C., and Zabinsky, Z. B. To appear. A numerical evaluation of several global optimization algorithms on selected benchmark test problems. J. Global Optimizat. Google ScholarGoogle Scholar
  2. Dixon, L. C. W. and Szegö, G. P., Eds. 1978. Towards Global Optimization. Vol. 2. North-Holland, Amsterdam.Google ScholarGoogle Scholar
  3. Facchinei, F., Júdice, J., and Soares, J. 1997. Generating box-constrained optimization problems. ACM Trans. Math. Soft. 23, 3 (Sept.), 443--447. Google ScholarGoogle Scholar
  4. Floudas, C. A. and Pardalos, P. M. 1990. A collection of test problems for constrained global optimization algorithms. In Lecture Notes in Computer Science, G. Goos and J. Hartmanis, Eds. Vol. 455. Springer Verlag, Berlin--New York. Google ScholarGoogle Scholar
  5. Floudas, C. A., Pardalos, P. M., Adjiman, C., Esposito, W., Gümüs, Z., Harding, S., Klepeis, J., Meyer, C., and Schweiger, C. 1999. Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht.Google ScholarGoogle Scholar
  6. Gaviano, M. and Lera, D. 1998. Test functions with variable attraction regions for global optimization problems. J. Global Optimizat. 13, 2 (Sept.), 207--223. Google ScholarGoogle Scholar
  7. Horst, R. and Pardalos, P. M., Eds. 1995. Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht.Google ScholarGoogle Scholar
  8. Kalantari, B. and Rosen, J. B. 1986. Construction of large-scale global minimum concave quadratic test problems. J. Optim. Theory Appl. 48, 2, 303--313. Google ScholarGoogle Scholar
  9. Khoury, B. N., Pardalos, P. M., and Du, D.-Z. 1993. A test problem generator for the Steiner problem in graphs. ACM Trans. Math. Soft. 19, 4 (Dec.), 509--522. Google ScholarGoogle Scholar
  10. Knuth, D. 1997. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, third ed. Addison-Wesley, Reading, Massachusetts. Google ScholarGoogle Scholar
  11. Li, Y. and Pardalos, P. M. 1992. Generating quadratic assignement test problems with known optimal permutations. Comp. Optim. Appl. 1, 2, 163--184.Google ScholarGoogle Scholar
  12. Locatelli, M. 2003. A note on the Griewank test function. J. Global Optimizat. 25, 2 (Feb.), 169--174. Google ScholarGoogle Scholar
  13. Moré, J., Garbow, B., and Hillstrom, K. 1981. Testing unconstrained optimization software. ACM Trans. Math. Soft. 7, 1 (Mar.), 17--41. Google ScholarGoogle Scholar
  14. Moshirvaziri, K. 1994. Construction of test problems for a class of reverse convex programs. J. Optim. Theory Appl. 81, 2, 343--354. Google ScholarGoogle Scholar
  15. Moshirvaziri, K., Amouzegar, M. A., and Jacobsen, S. E. 1996. Test problem construction for linear bilevel programming problem. Special Issue: Hierarchical and Bilevel Programming, J. Global Optimizat. 8, 3 (Apr.), 235--244.Google ScholarGoogle Scholar
  16. Pardalos, P. M. 1987. Generation of large-scale quadratic programs for use as global optimization test problems. ACM Trans. Math. Soft. 13, 2 (June), 133--137. Google ScholarGoogle Scholar
  17. Pardalos, P. M. 1991. Construction of test problems in quadratic bivalent programming. ACM Trans. Math. Soft. 17, 1 (Mar.), 74--87. Google ScholarGoogle Scholar
  18. Pintér, J. 2002. Global optimization: Software, test problems, and applications. In Handbook of Global Optimization, P. M. Pardalos and H. E. Romeijn, Eds. Vol. 2. Kluwer Academic Publishers, Dordrecht, 515--569.Google ScholarGoogle Scholar
  19. Schittkowski, K. 1980. Nonlinear Programming Codes. Springer Verlag, Berlin--New York.Google ScholarGoogle Scholar
  20. Schittkowski, K. 1987. More Test Examples for Nonlinear Programming Codes. Springer Verlag, Berlin--New York. Google ScholarGoogle Scholar
  21. Schoen, F. 1993. A wide class of test functions for global optimization. J. Global Optimizat. 3, 133--137.Google ScholarGoogle Scholar
  22. Sung, Y. Y. and Rosen, J. B. 1982. Global minimum test problem construction. Math. Progr. 24, 353--355.Google ScholarGoogle Scholar

Index Terms

  1. Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader