skip to main content
article

Solving convex programs by random walks

Published:01 July 2004Publication History
Skip Abstract Section

Abstract

Minimizing a convex function over a convex set in n-dimensional space is a basic, general problem with many interesting special cases. Here, we present a simple new algorithm for convex optimization based on sampling by a random walk. It extends naturally to minimizing quasi-convex functions and to other generalizations.

References

  1. Bertsimas, D., and Tsitsiklis, J. 1997. Introduction to Linear Optimization, Athena Scientific. Google ScholarGoogle Scholar
  2. Dyer, M., Frieze, A., and Kannan, R. 1991. A random polynomial time algorithm for estimating the volumes of convex bodies. J. ACM 38, 1--17. Google ScholarGoogle Scholar
  3. Gardner, R. J. 2002. The Brunn--Minkowski inequality. Bull. AMS 39, 3, 355--405.Google ScholarGoogle Scholar
  4. Grötschel, M., Lovász, L., and Schrijver, A. 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169--197.Google ScholarGoogle Scholar
  5. Grötschel, M., Lovász, L., and Schrijver, A. 1988. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, New York.Google ScholarGoogle Scholar
  6. Grunbaum, B. 1960. Partitions of mass-distributions and convex bodies by hyperplanes. Pacific J. Math. 10, 1257--1261.Google ScholarGoogle Scholar
  7. Jerrum, M., Sinclair, A., Vigoda, E. 2001. A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. In Proceedings of the 33rd Annual ACM STOC. ACM, New York, 712--721. Google ScholarGoogle Scholar
  8. Kalai, A., and Vempala, S. 2002. Efficient algorithms for universal portfolios. J. Mach. Learn. Res. 3, 423--440. Google ScholarGoogle Scholar
  9. Kannan, R., and Lovász, L. 1999. Faster mixing via average conductance. In Proceedings of the 31st Annual ACM STOC. ACM, New York, 282--287. Google ScholarGoogle Scholar
  10. Kannan, R., Lovász, L., and Simonovits, M. 1997. Random walks and and an O*(n5) volume algorithm for convex sets. Rand. Struct. Algor. 11, 1--50. Google ScholarGoogle Scholar
  11. Kannan, R., Mount, J., and Tayur, S. 1995. A randomized algorithm to optimize over certain convex sets. Math. Oper. Res. 20, 3, 529--549. Google ScholarGoogle Scholar
  12. Karp, R. M., and Papadimitriou, C. H. 1982. On linear characterization of combinatorial optimization problems. SIAM J. Comput. 11, 620--632.Google ScholarGoogle Scholar
  13. Khachiyan, L. G. 1979. A polynomial algorithm in linear programming (in Russian). Doklady Aked. Nauk SSSR, 244, 1093--1096. (English translation: Soviet Mathematics Doklady, 20, 191--194, 1979.)Google ScholarGoogle Scholar
  14. Levin, A. Yu. 1965. On an algorithm for the minimization of convex functions (in Russian). Doklady Aked. Nauk SSSR 160, 1244--1247. (English translation: Soviet Mathematics Doklady, 6, 286--290, 1965.)Google ScholarGoogle Scholar
  15. Lovász, L. 1998. Hit-and-run mixes fast. Math. Prog. 86, 443--461.Google ScholarGoogle Scholar
  16. Lovász, L., and Simonovits, M. 1993. Random walks in convex bodies and an improved volume algorithm. Rand. Struct. Algor. 4, 259--412.Google ScholarGoogle Scholar
  17. Padberg, M. W., and Rao, M. R. 1981. The Russian method for linear programming. III: Bounded integer programming. Research Report 81-39, New York University, Graduate School of Business Administration, New York.Google ScholarGoogle Scholar
  18. Prekopa, A. 1973. On logarithmic concave measures and functions. Acta Sci. Math. Szeged 34, 335--343.Google ScholarGoogle Scholar
  19. Rudelson, M. 1999. Random vectors in the isotropic position. J. Funct. Anal. 164, 60--72.Google ScholarGoogle Scholar
  20. Schneider, R. 1993. Convex Bodies: The Brunn--Minkowski Theory. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  21. Vaidya, P. M. 1996. A new algorithm for minimizing convex functions over convex sets. Math. Prog. 73, 291--341. Google ScholarGoogle Scholar
  22. Yudin, D. B., and Nemirovski, A. S. 1976. Evaluation of the information complexity of mathematical programming problems (in Russian). Ekonomika i Matematicheskie Metody 12, 128--142, (English translation: Matekon 13, 2, 3--45, 1976).Google ScholarGoogle Scholar

Index Terms

  1. Solving convex programs by random walks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 51, Issue 4
        July 2004
        181 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/1008731
        Issue’s Table of Contents

        Copyright © 2004 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2004
        Published in jacm Volume 51, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader