skip to main content
article

Managing uncertainty in moving objects databases

Published:01 September 2004Publication History
Skip Abstract Section

Abstract

This article addresses the problem of managing Moving Objects Databases (MODs) which capture the inherent imprecision of the information about the moving object's location at a given time. We deal systematically with the issues of constructing and representing the trajectories of moving objects and querying the MOD. We propose to model an uncertain trajectory as a three-dimensional (3D) cylindrical body and we introduce a set of novel but natural spatio-temporal operators which capture the uncertainty and are used to express spatio-temporal range queries. We devise and analyze algorithms for processing the operators and demonstrate that the model incorporates the uncertainty in a manner which enables efficient querying, thus striking a balance between the modeling power and computational efficiency. We address some implementation aspects which we experienced in our DOMINO project, as a part of which the operators that we introduce have been implemented. We also report on some experimental observations of a practical relevance.

References

  1. Agarwal, A. K., Arge, L., and Erickson, J. 2000. Indexing moving points. In Proceedings of the 19th International ACM Conference on Principles of Database Systems (PODS) Conference. ACM Press, New York, NY, 175--186.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agarwal, P. K. 1990a. Partitioning arrangements of lines: 1. An efficient deterministic algorithm. Discrete Computat. Geom. 5, 449--483.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Agarwal, P. K. 1990b. Partitioning arrangements of lines: 2. Applications. Discr. Computat. Geom. 5, 533--573.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Agarwal, P. K., Flato, E., and Halperin, D. 2002. Polygon decomposition for efficient construction of minkowski sums. Computat. Geom. 21, 1-2, 39--61.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Basch, J. 2004. Personal communication.]]Google ScholarGoogle Scholar
  6. Basch, J., Guibas, L. J., and Ramkumar, G. D. 2003. Reporting red-blue intersections between two sets of connected segments. Algorithmica 35, 1, 1--20.]]Google ScholarGoogle Scholar
  7. Bentley, J. L. and Ottmann, T. A. 1979. Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 28, 9, 643--647.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brundick, F. S. and Hartwig, G. W. 1997. Model-based situational awareness. In Proceedings of the Joint Service Combat Identification Systems Conference (CISC-97).]]Google ScholarGoogle Scholar
  9. Cao, H., Wolfson, O., and Trajcevski, G. 2003. Spatio-temporal data reduction with deterministic error bounds. In Proceedings of the DIALM-POMC Joint Workshop on Foundations of Mobile Computing.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Carey, M., Chamberlin, D., Narayanan, S., Vance, B., Doole, D., Rileau, S., Swegarman, R., and Mattos, N. 1999. O-O what have they done to DB2. In Proceedings of the 25th International Conference on Very Large Databases (VLDB). 542--554.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chamberlain, S. 1995. Model-based battle command: A paradigm whose time has come. In Proceedings of the Symposium on C2 Research and Technology, NDU.]]Google ScholarGoogle Scholar
  12. Chazelle, B. 1991. Triangulating a simple polygon in linear time. Discr. Computat. Geom. 6, 485--524.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chazelle, B. and Edelsbrunner, H. 1992. An optimal algorithm for intersecting line segments in the plane. J. Assoc. Comput. Mach. 39 1, 1--54.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chen, W., Chow, J., Fuh, Y., grandbois, J., Jou, M., Mattos, N., Tran, B., and Wang, Y. 1999. High level indexing of user-defined types. In Proceedings of the 25th International Conference on Very Large Databases (VLDB). 554--564.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cheng, R., Kalashnikov, D., and Prabhakar, S. 2003. Evaluating probabilistic queries over imprecise data. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, New York, NY, 551--562.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chin, F. Y. L., Snoeyink, J., and Wang, C. A. 1999. Finding the medial axis of a simple polygon in linear time. Discr. Computat. Geom. 21, 3, 405--420.]]Google ScholarGoogle ScholarCross RefCross Ref
  17. Davis, J. R. 1998. Managing Geo-Spatial Information within the DBMS. IBM DB2 Spatial Extender (IBM White Paper).]]Google ScholarGoogle Scholar
  18. Dreyfus, S. E. 1969. An appraisal of some shortest-path algorithms. Operat. Res. 17, 3.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Erwig, M., Schneider, M., and Güting, R. H. 1998. Temporal and spatio-temporal datasets and their expressive power. In Proceedings of the Advances in Database Technologies (ER'98, Workshop on Spatio-Temporal Management). Lecture Notes in Computer Science, vol. 1552. Springer-Verlag, Berlin, Germany, 454--465.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. ESRI. 1996. ArcView GIS:The Geographic Information System for Everyone. Environmental Systems Research Institute Inc., St. Paul, MN.]]Google ScholarGoogle Scholar
  21. Forlizzi, L., Güting, R. H., Nardelli, E., and Schneider, M. 2000. A data model and data structures for moving objects databases. In Proceedings of the ACM SIGMOD Internation Conference on Management of Data. ACM Press, New York, NY, 319--330.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gaede, V. and Günther, O. 1998. Multidimensional access methods. ACM Comput. Surv. 11, 4.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Genesereth, M. R. and Nilsson, N. J. 1987. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, San Francisco, CA.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C., Lorentzos, N., Schneider, M., and Vazirgiannis, M. 2000. A foundation for representing and queirying moving objects. ACM Trans. Database Syst. 25, 1, 1--42.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N., Schneider, M., and Viqueira, J. R. R. 2003. Spatio-temporal models and languages: An approach based on data types. In Spatio-Temporal Databases: The Chorochronos Approach, M. Koubarakis et al., Eds. Lecture Notes in Computer Science, vol. 2520. Springer-Verlag, Berlin, Germany, 117--177.]]Google ScholarGoogle Scholar
  26. Hartwig, G. W., Brundick, F. S., and Kothenbeutel, C. S. 1996. Tactically significant route planning. Tech. Rep. ARL-TR-1139. Army Research Lab, Aberdeen Proving Ground, MJ.]]Google ScholarGoogle Scholar
  27. Hightower, J. and Borrielo, G. 2001. Location systems for ubiquitous computing. IEEE Comput. Mag. 34, 8 (Aug.), 57--66.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kedem, K., Livne, R., Pach, J., and Sharir, M. 1986. On the union of Jordan-regions and collision-free translational motion amidst polygonal obstacles. Discr. Computat. Geom. 1, 59--71.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kollios, D., Gunopulos, D., and Tsotras, V. J. 1999a. On indexing mobile objects. In Proceedings of the 18th Internations ACM PODS Conference on Principles of Database Systems. ACM Press, New York, NY, 261--272.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kollios, G., Gunopulos, D., and Tsotras, V. J. 1999b. Nearest neighbour queries in a mobile environment. In Spatio-Temporal Database Management. In Proceedings of the Inernational Workshop STDBM '99. Lecture Notes in Computer Science, vol. 1678. Springer-Verlag, Berlin, Germany, 119--134.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kornacker, M. 1999. High-sperformance extensible indexing. In Proceedings of the 25th International Conference on Very Large Databases (VLDB). 699--708.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mairson, H. G. and Stolfi, J. 1988. Reporting and counting intersections between two sets of line segments. In Theoretical Foundations of Computer Science, NATO ASI., Vol. F40. Kluwer Academic Publishers, Norwell, MA.]]Google ScholarGoogle Scholar
  33. O'Rourke, J. 2000. Computational Geometry in C. Cambridge University Press, Cambridge, U.K.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Palazzi, L. and Snoeyink, R. 1994. Counting and reporting red/blue segment intersections. Graph. Models Image Process. 56, 4, 304--310.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pasquale, A. D., Forlizzi, L., Jensen, C. S., Manolopoulos, Y., Nardelli, E., Pfoser, D., Proietti, G., Saltenis, S., Theodoridis, Y., and Tzouramanis, T. 2003. Access methods and query processing techniques. In Spatio-Temporal Databases: The Chorochronos Approach, M. Koubarakis et al., Eds. Lecture Notes in Computer Science, vol. 2520. Springer-Verlag, Berlin, Germany, 203--263.]]Google ScholarGoogle Scholar
  36. Pfoser, D. and Jensen, C. 1999. Capturing the uncertainty of moving objects representation. In Proceedings of the International Symposium on Advances in Spatial Databases (SSD). 111--132.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pfoser, D., Theodoridis, Y., and Jensen, C. 1999. Indexing trajectories of moving point objects. Tech. rep. 99/07/03. Dept. of Computer Science, University of Aalborg, Aalborg, Denmark.]]Google ScholarGoogle Scholar
  38. Pitoura, E. and Samaras, G. 2001. Locating objects in mobile computing. IEEE Trans. Knowl. Data Eng. 13, 4, 571--592.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., and Hambrusch, S. 2002. Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans. Comput. 51, 10, 1124--1140.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Saltenis, S. and Jensen, C. 1999. R-tree based indexing of general spatio-temporal data. Tech. rep. TR-45. TimeCenter. Available online at www.cs.auc.dk/TimeCenter/pub.html.]]Google ScholarGoogle Scholar
  41. Saltenis, S. and Jensen, C. 2002. Indexing of moving objects for location-based services. In Proceedings of the International Conference on Data Engineering (ICDE). 463--472.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Saltenis, S., Jensen, C. S., Leutenegger, S. T., and Lopez, M. A. 2000. Indexing the positions of continuously moving objects. In Proceedings of the ACM SIGMOD International Conference on Management of Data, ACM Press, New York, NY, 331--342.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sharir, M. and Agarwal, P. K. 1995. Davenport-Schinzel Sequences and Their Geometric Applications. Campbridge University Press, Cambridge, U.K.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sistla, A., Wolfson, P., Chamberlain, S., and Dao, S. 1998. Querying the uncertain positions of moving objects. In Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, and S. Sripada, Eds. Lecture Notes in Computer Science, vol. 1399. Springer-Verlag, Berlin, Germany, 310--337.]]Google ScholarGoogle Scholar
  45. Sistla, A. P., Wolfson, O., Chamberlain, S., and Dao, S. 1997. Modeling and querying moving objects. In Proceedings of the International Conference on Data Engineering (ICDE). 422--432.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Sutherland, W. A. 1978. Introduction to Metric and Topological Spaces. Oxford University Press, Oxford, U.K.]]Google ScholarGoogle Scholar
  47. Tansel, A., Clifford, J., Jajodia, S., Segev, A., and Snodgrass, R. 1993. Temporal Databases: Theory and Implementation. Benjamin Cummings Publishing Co., San Francisco, CA.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Tayeb, J., Ulusoy, O., and Wolfson, O. 1998. A quadtree-based dynamic attribute indexing method. Comput. J. 41, 3, 185--200.]]Google ScholarGoogle ScholarCross RefCross Ref
  49. Team, I. D. 1999. Informix datablade technology: Transforming data into smart data. Informix Press, Menlo Park, CA.]]Google ScholarGoogle Scholar
  50. Theodoridis, Y., Sellis, T., Papadopoulos, A. N., and Manolopoulos, Y. 1999a. Specifications for efficient indexing in spatiotemporal databases. In Proceedings of the International Conferece on Statistical and Scientific Database Management (SSDBM). IEEE Computer Society Press, Los Alamitos, CA, 123--132.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Theodoridis, Y., Silva, J. R. O., and Nascimento, M. A. 1999b. On the generation of spatiotemporal datasets. In Proceedings of the International Symposium on Large Spatial Databases. 147--164.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Trajcevski, G., Wolfson, O., Cao, H., Lin, H., Zhang, F., and Rishe, N. 2002a. Managing uncertain trajectories of moving objects with DOMINO. In Proceedings of the International Conference on Enterprise Information Systems (ICEIS). 218--225.]]Google ScholarGoogle Scholar
  53. Trajcevski, G., Wolfson, O., Xu, B., and Nelson, P. 2002b. Real-time traffic updates in moving object databases. In Proceedings of the MDDS Workshop, in conjunction with Database and Expert Systems Applications (DEXA)). 698--704.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Vazirgiannis, M., Theodoridis, Y., and Sellis, T. 1998. Spatiotemporal composition and indexing for large multimedia applications. Multimed. Syst. J. 6, 4.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Vazirgiannis, M. and Wolfson, O. 2001. A spatiotemporal model and language for moving objects on road networks. In Proceedings of the Symposium on Spatial and Temporal Databases (SSTD).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Want, R. and Schilit, B. 2001. Expanding the horizons of location aware computing. IEEE Comput. Mag. 34, 8 (Aug.), 31--34.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Weibel, R. 1997. Generalization of spatial data: Principles and selected algorithms. In Algorithmic Foundations of Geographic Information Systems, M. J. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, Eds. Lecture Notes in Computer Science, vol. 1340. Springer-Verlag, Berlin, Germany, 99--152.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Wolfson, O., Cao, H., Lin, H., Trajcevski, G., Zhang, F., and Rishe, N. 2002. Management of dynamic location information in domino. In Proceedings of the International Conference on Extending Database Technology (EDBT).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., and Mendez, G. 1998. Cost and imprecision in modeling the position of moving objects. In Proceedings of the International Conference on Data Engineering (ICDE). 588--596.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Wolfson, O., Sistla, A. P., Chamberlain, S., and Yesha, Y. 1999. Updating and querying databases that track mobile units. Distrib. Parall. Databases 7, 3, 257--387.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Wolfson, O. and Yin, H. 2003. Accuracy and resource consumption in tracking and location prediction. In Proceedings of the Symposium on Spatial and Temporal Databases (SSTD), 325--343.]]Google ScholarGoogle Scholar

Index Terms

  1. Managing uncertainty in moving objects databases

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Database Systems
        ACM Transactions on Database Systems  Volume 29, Issue 3
        September 2004
        136 pages
        ISSN:0362-5915
        EISSN:1557-4644
        DOI:10.1145/1016028
        Issue’s Table of Contents

        Copyright © 2004 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 September 2004
        Published in tods Volume 29, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader