skip to main content
article

An empirical evaluation of internet latency expansion

Published:01 January 2005Publication History
Skip Abstract Section

Abstract

The Internet's latency expansion determines the asymptotic performance of large-scale distributed systems (such as Peer-to-Peer systems), but previous studies on the Internet have defined expansion in terms of router-level hops. In this paper, we empirically determine the Internet's latency expansion characteristics using measurements from two different Internet topology datasets. Our results show that the Internet router-level topology exhibits a power-law latency expansion, in contrast to its exponential expansion rate in terms of hops.

References

  1. I. Abraham, D. Malkhi and Oren Dubzinski. LAND: Strech (1+epsilon) Locality Aware Networks for DHTs. the ACM-SIAM Symposium on Discrete Algorithms (SODA04), New Orleans, LA, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. W. Aiello, F. Chung, and L. Lu, A Random Graph Model for Massive Graphs. the 32nd Annual Symposium on Theory of Computing, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Bollobas. Random Graphs. Academic Press, Inc. Orlando, Florida, 1985.Google ScholarGoogle Scholar
  4. C. J. Bovy, H. T. Metrodimedjo, G. Hooghiemstra, H. Uijterwaal, and P. Van Mieghem. Analysis of End-to-end Delay Measurements in Internet. the 3th International workshop of Passive and Active Network Measurement, 2002.Google ScholarGoogle Scholar
  5. C. Faloutsos, P. Faloutsos, and M. Faloutsos. On Power-law Relationships of the Internet Topology. ACM SIGCOMM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Govindan and H. Tangmunarunkit. Heuristics for Internet Map Discovery. IEEE INFOCOM, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. R. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-restricted Metrics. ACM Symposium on Theory of Computing (STOC '02). May 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Kempe, J. Kleinberg. Protocols and Impossibility Results for Gossip-Based Communication Mechanisms. FOCS 2002, Vancouver. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Lakhina, J. W. Byers, M. Crovella, and P. Xie. Sampling Biases in IP Topology Measurements. IEEE INFOCOM, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  10. H. Lim, J. C. Hou, and C. Choi. Constructing Internet Coordinate System Based on Delay Measurement. Internet Measurement Conference (IMC), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Co, New York, rev. 1983.Google ScholarGoogle Scholar
  12. E. Ng, and H. Zhang. Predicting Internet Network Distance with Coordinated-nased Approaches. IEEE INFOCOM, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  13. V. N. Padmanabhan, L. Subramanian. An Investigation of Geographic Mapping Techniques for Internet Hosts. ACM SIGCOMM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An Architecture for Large-Scale Internet Measurement. IEEE Communications, 36 8, 48--54 (1998) Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Percacci, and A. Vespignani. Scale-free Behavior of the Internet Global Performance. European Physical Journal B 32, p. 411--414, 2003.Google ScholarGoogle Scholar
  16. G. Phillips, S. Shenker, H. Tangmunarunkit. Scaling of Multicast Trees: Comments on the Chuang-Sirbu Scaling Law. ACM SIGCOMM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. PlanetLab homepage. http://www.planet-lab.org/.Google ScholarGoogle Scholar
  18. C. G. Plaxton, R. Rajaraman, and A. W Richa. Accessing Nearby Copies of Replicated Objects in A Distributed Environment. the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. Spring, R. Mahajan, D. Wetherall. Measuring ISP Topologies with Rocketfuel. ACM SIGCOMM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. Tang, and M. Crovella. Virtual Landmarks for the Internet. Internet Measurement Conference (IMC), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Tang, and M. Crovella. Geometric Exploration of the Landmark Selection Problem. the 5th International workshop of Passive and Active Network Measurement, 2004.Google ScholarGoogle Scholar
  22. H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W. Willinger, Network Topology Generators: Degree-Based vs. Structural. ACM SIGCOMM 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Zhang, A. Goel, and R. Govindan. Incrementally Improving Lookup Latency in Distributed Hash Table Systems. ACM SIGMETRICS 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An empirical evaluation of internet latency expansion

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM SIGCOMM Computer Communication Review
            ACM SIGCOMM Computer Communication Review  Volume 35, Issue 1
            January 2005
            108 pages
            ISSN:0146-4833
            DOI:10.1145/1052812
            Issue’s Table of Contents

            Copyright © 2005 Authors

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 January 2005

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader