skip to main content
10.1145/1060745.1060766acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
Article

SemRank: ranking complex relationship search results on the semantic web

Published:10 May 2005Publication History

ABSTRACT

While the idea that querying mechanisms for complex relationships (otherwise known as Semantic Associations) should be integral to Semantic Web search technologies has recently gained some ground, the issue of how search results will be ranked remains largely unaddressed. Since it is expected that the number of relationships between entities in a knowledge base will be much larger than the number of entities themselves, the likelihood that Semantic Association searches would result in an overwhelming number of results for users is increased, therefore elevating the need for appropriate ranking schemes. Furthermore, it is unlikely that ranking schemes for ranking entities (documents, resources, etc.) may be applied to complex structures such as Semantic Associations.In this paper, we present an approach that ranks results based on how predictable a result might be for users. It is based on a relevance model SemRank, which is a rich blend of semantic and information-theoretic techniques with heuristics that supports the novel idea of modulative searches, where users may vary their search modes to effect changes in the ordering of results depending on their need. We also present the infrastructure used in the SSARK system to support the computation of SemRank values for resulting Semantic Associations and their ordering.

References

  1. Aleman-Meza, B., Halaschek, C., Arpinar, I., and Sheth, A. Context-Aware Semantic Association Ranking. In Proceedings of SWDB'03: 33--50, Berlin, Germany, 2003]]Google ScholarGoogle Scholar
  2. Anyanwu, K., Sheth, A. The ? operator: Discovering and Ranking Semantic Associations on the Semantic Web, ACM SIGMOD Record, v.31 n.4, December 2002]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anyanwu, K., Sheth, A. r-Queries: enabling querying for Semantic Associations on the Semantic Web. WWW 2003. pages 690 -- 699.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barton, S. Designing Indexing Structure for Discovering Relationships in RDF Graphs. DATESO 2004: 7--17.]]Google ScholarGoogle Scholar
  5. Booch, G. Object Oriented Design with Applications, Benjamin-Cummings Publishing Co., Inc. Redwood City, CA USA. 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brickley, D., Guha, R.V. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Working Draft, 2002.]]Google ScholarGoogle Scholar
  7. Brin, S., Page, L. The anatomy of a large-scale hypertextual Web search engine. WWW1998 pages 107--117. Brisbane, Australia.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cohen. S., Mamou, J., Kanza, Y., Sagiv, Y. XSEarch: A Semantic Search Engine for XML, VLDB 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Rocha, C., Schwabe, D., Poggi de Aragao, M. A Hybrid Approach for Searching in the Semantic Web. WWW2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Goldman, R., Widom, J. Dataguides: Enabling query formulation and optimization in semistructured databases, VLDB, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Guha, R. V., McCool, R., Eric Miller: Semantic search. WWW 2003: 700-709.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Halaschek, C., Aleman-Meza, B., Arpinar, B., Sheth, A. Discovering and Ranking Semantic Associations over a Large RDF Metabase. VLDB 2004 demo paper.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hristidis, V., Papakonstantinou, Y., Balmin, A. Keyword Proximity Search on XML Graphs. IEEE ICDE, 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  14. Kleinberg, J. Authorative sources in a hyperlinked environment. J. ACM, 48:604-632, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J. XRANK: Ranked keyword search over XML documents. In ACM SIGMOD 2003, Pages: 16--27, San Diego, California.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lin, D. An Information-Theoretic Definition of Similarity, Proceedings of the Fifteenth International Conference on Machine Learning, p.296--304, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Milo, T., Suciu, D. "Index structures for Path Expressions ". In Proc. of the 7th Intl. Conf. on Database Theory, January 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mukherjea, S., Bamba, B: BioPatentMiner: An Information Retrieval System for BioMedical Patents. VLDB 2004: 1066--1077.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Natsev, A., Chang, Y. C., Smith, J. R., Li, C. S., Vitter, J. S. Supporting incremental join queries on ranked inputs. In Proc. of VLDB 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Stojanovic, N., Mädche, A., Staab, S., Studer, R., Sure, Y. SEAL -- A Framework for Developing SEmantic PortALs. In: K-CAP 2001 - In Proc. of ACM Conference on Knowledge Capture, October 21--23, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rodriguez, M. and Egenhofer, M. Determining Semantic Similarity Among Entity Classes from Different Ontologies, IEEE TKDE , 15 (2): 442--456, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shannon, C.E. (1948), A Mathematical Theory of Communication, Bell Syst. Tech. J., 27, 379--423, 623--656.]]Google ScholarGoogle Scholar
  23. Sheth, A., Aleman-Meza, B., Arpinar, I. B., Halaschek, C., Ramakrishnan, C., Bertram, C., Warke, Y., Avant, D., Arpinar, F. S., Anyanwu, K., Kochut, K. Semantic Association Identification and Knowledge Discovery for National Security Applications Journal of Database Management, 16 (1), Jan-Mar 2005, pp. 33--53.]]Google ScholarGoogle Scholar
  24. Sheth, A., Arpinar, B., Kayshap, V. Relationships at the heart of Semantic Web: Modeling, Discovering and Exploiting Complex Relationships. Enhancing the Power of Internet Studies in Fuzziness and Soft Computing. M. Nikravesh, B. Azvin, R. Yager and L. Zadeh, Springer-Verlag, 2003.]]Google ScholarGoogle Scholar
  25. Stojanovic, N., Studer, R., Stojanovic, L. An Approach for the Ranking of Query Results in the Semantic Web. ISWC 2003, Pages 500 -- 516.]]Google ScholarGoogle Scholar
  26. Zhuge, H., Zheng, P. Ranking Semantic-linked Network, WWW2003, Budapest, May, 2003.]]Google ScholarGoogle Scholar
  27. Customer Identification and Risk Assessment (CIRAS), Semagix Inc.http://www.semagix.com/solutions_ciras.html]]Google ScholarGoogle Scholar
  28. SWETO: Semantic Web Technology Evaluation Ontology: http:/lsdis.cs.uga.edu/projects/SemDis/Sweto.]]Google ScholarGoogle Scholar
  29. TAP: http://tap.stanford.edu/.]]Google ScholarGoogle Scholar
  30. DBLP: An RDF ontology for DBLP. http://www.semanticweb.org/library/.]]Google ScholarGoogle Scholar
  31. ODP RDF dump http://rdf.dmoz.org/.]]Google ScholarGoogle Scholar

Index Terms

  1. SemRank: ranking complex relationship search results on the semantic web

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader