skip to main content
article

Improved long-period generators based on linear recurrences modulo 2

Published:01 March 2006Publication History
Skip Abstract Section

Abstract

Fast uniform random number generators with extremely long periods have been defined and implemented based on linear recurrences modulo 2. The twisted GFSR and the Mersenne twister are famous recent examples. Besides the period length, the statistical quality of these generators is usually assessed via their equidistribution properties. The huge-period generators proposed so far are not quite optimal in this respect. In this article, we propose new generators of that form with better equidistribution and “bit-mixing” properties for equivalent period length and speed. The state of our new generators evolves in a more chaotic way than for the Mersenne twister. We illustrate how this can reduce the impact of persistent dependencies among successive output values, which can be observed in certain parts of the period of gigantic generators such as the Mersenne twister.

References

  1. Berlekamp, E. R. 1970. Factoring polynomials over large finite fields. Math. Comput. 24, 713--735.Google ScholarGoogle Scholar
  2. Brent, R. P., Larvala, S., and Zimmermann, P. 2003. A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377. Math. Comput. 72, 243, 1443--1452. Google ScholarGoogle Scholar
  3. Chabaud, F. and Lercier, R. 2000. A toolbox for fast computation in finite extension over finite rings. Software User's Guide. See http://zenfact.sourceforge.net/.Google ScholarGoogle Scholar
  4. Compagner, A. 1991. The hierarchy of correlations in random binary sequences. J. Stat. Phy. 63, 883--896.Google ScholarGoogle Scholar
  5. Couture, R. and L'Ecuyer, P. 2000. Lattice computations for random numbers. Math. Comput. 69, 230, 757--765. Google ScholarGoogle Scholar
  6. Erdmann, E. D. 1992. Empirical tests of binary keystreams. M.S. thesis, Department of Mathematics, Royal Holloway and Bedford New College, University of London.Google ScholarGoogle Scholar
  7. Fushimi, M. and Tezuka, S. 1983. The k-distribution of generalized feedback shift register pseudorandom numbers. Commun. ACM 26, 7, 516--523. Google ScholarGoogle Scholar
  8. Knuth, D. E. 1998. The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 3rd ed. Addison-Wesley, Reading, Mass. Google ScholarGoogle Scholar
  9. L'Ecuyer, P. 1994. Uniform random number generation. Ann. Oper. Res. 53, 77--120.Google ScholarGoogle Scholar
  10. L'Ecuyer, P. 1996. Maximally equidistributed combined Tausworthe generators. Math. Comput. 65, 213, 203--213. Google ScholarGoogle Scholar
  11. L'Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47, 1, 159--164. Google ScholarGoogle Scholar
  12. L'Ecuyer, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Math. Comput. 68, 225, 261--269. Google ScholarGoogle Scholar
  13. L'Ecuyer, P. 2004. Random number generation. In Handbook of Computational Statistics, J. E. Gentle et al., eds. Springer Verlag, Berlin, 35--70.Google ScholarGoogle Scholar
  14. L'Ecuyer, P. and Panneton, F. 2002. Construction of equidistributed generators based on linear recurrences modulo 2. In Monte Carlo and Quasi-Monte Carlo Methods 2000, K.-T. Fang et al., eds. Springer Verlag, Berlin, 318--330. Google ScholarGoogle Scholar
  15. L'Ecuyer, P. and Simard, R. 2002. TestU01: A Software Library in ANSI C for Empirical Testing of Random Number Generators. Software User's Guide. http://www.iro.umontreal.ca/~lecuyer. Google ScholarGoogle Scholar
  16. Lindholm, J. H. 1968. An analysis of the pseudo-randomness properties of subsequences of long m-sequences. IEEE Trans. Inf. Theor. IT-14, 4, 569--576.Google ScholarGoogle Scholar
  17. Marsaglia, G. 1985. A current view of random number generators. In Computer Science and Statistics, Sixteenth Symposium on the Interface. Elsevier Science Publishers, North-Holland, Amsterdam, 3--10.Google ScholarGoogle Scholar
  18. Matsumoto, M. and Kurita, Y. 1994. Twisted GFSR generators II. ACM Trans. Model. Comput. Simul. 4, 3, 254--266. Google ScholarGoogle Scholar
  19. Matsumoto, M. and Kurita, Y. 1996. Strong deviations from randomness in m-sequences based on trinomials. ACM Trans. Model. Comput. Simul. 6, 2, 99--106. Google ScholarGoogle Scholar
  20. Matsumoto, M. and Nishimura, T. 1998. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 1, 3--30. Google ScholarGoogle Scholar
  21. Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia. Google ScholarGoogle Scholar
  22. Nishimura, T. 2000. Tables of 64-bit Mersenne twisters. ACM Trans. Model. Comput. Simul. 10, 4, 348--357. Google ScholarGoogle Scholar
  23. Panneton, F. 2004. Construction d'ensembles de points basée sur des récurrences linéaires dans un corps fini de caractéristique 2 pour la simulation Monte Carlo et l'intégration quasi-Monte Carlo. Ph.D. thesis, Département d'informatique et de recherche opérationnelle, Université de Montréal, Canada.Google ScholarGoogle Scholar
  24. Panneton, F. and L'Ecuyer, P. 2004. Random number generators based on linear recurrences in F2w. In Monte Carlo and Quasi-Monte Carlo Methods 2002, H. Niederreiter, ed. Springer Verlag, Berlin, 367--378. Google ScholarGoogle Scholar
  25. Rieke, A., Sadeghi, A.-R., and Poguntke, W. 1998. On primitivity tests for polynomials. In Proceedings of the 1998 IEEE International Symposium on Information Theory. Cambridge, Mass.Google ScholarGoogle Scholar
  26. Shannon, C. E. 1949. Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656--715.Google ScholarGoogle Scholar
  27. Tausworthe, R. C. 1965. Random numbers generated by linear recurrence modulo two. Math. Comput. 19, 201--209.Google ScholarGoogle Scholar
  28. Tezuka, S. 1995. Uniform Random Numbers: Theory and Practice. Kluwer Academic, Norwell, Mass.Google ScholarGoogle Scholar
  29. Tezuka, S. and L'Ecuyer, P. 1991. Efficient and portable combined Tausworthe random number generators. ACM Trans. Model. Comput. Simul. 1, 2, 99--112. Google ScholarGoogle Scholar
  30. Tootill, J. P. R., Robinson, W. D., and Eagle, D. J. 1973. An asymptotically random Tausworthe sequence. J. ACM 20, 469--481. Google ScholarGoogle Scholar
  31. Wang, D. and Compagner, A. 1993. On the use of reducible polynomials as random number generators. Math. Comput. 60, 363--374.Google ScholarGoogle Scholar

Index Terms

  1. Improved long-period generators based on linear recurrences modulo 2

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader