skip to main content
10.1145/1273496.1273497acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
Article

Quantum clustering algorithms

Published:20 June 2007Publication History

ABSTRACT

By the term "quantization", we refer to the process of using quantum mechanics in order to improve a classical algorithm, usually by making it go faster. In this paper, we initiate the idea of quantizing clustering algorithms by using variations on a celebrated quantum algorithm due to Grover. After having introduced this novel approach to unsupervised learning, we illustrate it with a quantized version of three standard algorithms: divisive clustering, k-medians and an algorithm for the construction of a neighbourhood graph. We obtain a significant speedup compared to the classical approach.

References

  1. Aïmeur, E., Brassard, G. & Gambs, S. (2006). Machine learning in a quantum world. Proceedings of Canadian AI 2006 (pp. 433--444).Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ambainis, A. (2003). Quantum walks and their algorithmic applications. International Journal of Quantum Information, 1, 507--518.Google ScholarGoogle ScholarCross RefCross Ref
  3. Angluin, D. (1988). Queries and concept learning. Machine Learning, 2, 319--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bell, J. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1(3), 195--200.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bennett, C. H. & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Proceedings of the IEEE Conference on Computers, Systems and Signal Processing, Bangalore, India (pp. 175--179).Google ScholarGoogle Scholar
  6. Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bonner, R. & Freivalds, R. (2002). A survey of quantum learning. Proceedings of the Workshop on Quantum Computation and Learning (pp. 106--119).Google ScholarGoogle Scholar
  8. Borůvka, O. (1926). O jistém problému minimálním. Práce Moravské Přirodovědecké Společnosti, 3, 37--58.Google ScholarGoogle Scholar
  9. Boyer, M., Brassard, G., Høyer, P. & Tapp, A. (1998). Tight bounds on quantum searching. Fortschritte Der Physik, 46, 493--505.Google ScholarGoogle ScholarCross RefCross Ref
  10. Brassard, G., Høyer, P., Mosca, M. & Tapp, A. (2002). Quantum amplitude amplification and estimation. Contemporary Mathematics, 305, 53--74.Google ScholarGoogle ScholarCross RefCross Ref
  11. Dürr, C., Heiligman, M., Høyer, P. & Mhalla, M. (2004). Quantum query complexity of some graph problems. Proceedings of the International Conference on Automata, Languages and Programming: ICALP'04 (pp. 481--493).Google ScholarGoogle ScholarCross RefCross Ref
  12. Dürr, C. & Høøyer, P. (1996). A quantum algorithm for finding the minimum. Available on http://arxiv.org/quant-ph/9607014.Google ScholarGoogle Scholar
  13. Einstein, A., Podolsky, B. & Rosen, N. (1935). Can quantum mechanical description of physical reality be considered complete? Physical Review, 47, 777--780.Google ScholarGoogle ScholarCross RefCross Ref
  14. Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2), 325--328.Google ScholarGoogle ScholarCross RefCross Ref
  15. Grover, L. K. (1998). A framework for fast quantum mechanical algorithms. Proceedings of the 30th ACM Symposium on Theory of Computing: STOC'98 (pp. 53--62). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Harel, D. & Koren, Y. (2001). On clustering using random walks. Proceedings of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science: FSTTCS'01 (pp. 18--41). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Horn, D. & Gottlieb, A. (2001). The method of quantum clustering. Proceedings of the Neural Information Processing Systems: NIPS'01 (pp. 769--776).Google ScholarGoogle Scholar
  18. Horn, D. & Gottlieb, A. (2002). Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Physical Review Letters, 88(1).Google ScholarGoogle Scholar
  19. Kaufman, L. & Rousseeuw, P. (1987). Clustering by means of medoids. in Statistical Data Analysis Based on the L1--Norm and Related Methods, Y. Dodge (editor), North-Holland, Amsterdam (pp. 405--416).Google ScholarGoogle Scholar
  20. Mishra, N., Oblinger, D. & Pitt, L. (2001). Sublinear time approximate clustering. Proceedings of 12th ACM-SIAM Symposium on Discrete Algorithms: SODA'01 (pp. 439--447). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nayak, A. & Wu, F. (1999). The quantum query complexity of approximating the median and related statistics. Proceedings of the 31st ACM Symposium on Theory of Computing: STOC'99 (pp. 384--393). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nielsen, M. & Chuang, I. (Eds.). (2000). Quantum Computation and Quantum Information. Cambridge University Press.Google ScholarGoogle Scholar
  23. Servedio, R. (2001). Separating quantum and classical learning. Proceedings of the International Conference on Automata, Languages and Programming: ICALP'01 (pp. 1065--1080). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing, 26, 1484--1509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Small, C. G. (1990). A survey of multidimensional medians. International Statistical Review, 58(3), 263--277.Google ScholarGoogle ScholarCross RefCross Ref
  26. Szegedy, M. (2004). Quantum speed-up of Markov chain based algorithms. Proceedings of 45th IEEE Symposium on Foundations of Computer Science: FOCS'04 (pp. 32--41). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tenenbaum, J. B., de Silva, V. & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319--2323.Google ScholarGoogle ScholarCross RefCross Ref
  1. Quantum clustering algorithms

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICML '07: Proceedings of the 24th international conference on Machine learning
      June 2007
      1233 pages
      ISBN:9781595937933
      DOI:10.1145/1273496

      Copyright © 2007 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 June 2007

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate140of548submissions,26%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader