skip to main content
article

AppWand: editing measured materials using appearance-driven optimization

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

We investigate a new approach to editing spatially- and temporally-varying measured materials that adopts a stroke-based workflow. In our system, a user specifies a small number of editing constraints with a 3-D painting interface which are smoothly propagated to the entire dataset through an optimization that enforces similar edits are applied to areas with similar appearance. The sparse nature of this appearance-driven optimization permits the use of efficient solvers, allowing the designer to interactively refine the constraints. We have found this approach supports specifying a wide range of complex edits that would not be easy with existing techniques which present the user with a fixed segmentation of the data. Furthermore, it is independent of the underlying reflectance model and we show edits to both analytic and non-parametric representations in examples from several material databases.

Skip Supplemental Material Section

Supplemental Material

pps054.mp4

References

  1. Borg, I. 1996. Modern Multidimensional Scaling: Theory and Applications. Springer.Google ScholarGoogle Scholar
  2. Brand, M. 2002. Charting a manifold. In Proceedings of Neural Information Processing Systems.Google ScholarGoogle Scholar
  3. Colbert, M., Pattanaik, S., and Krivanek, J. 2006. BRDF-Shop: Creating physically correct bidirectional reflectance distribution functions. IEEE Computer Graphics and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cook, R. L., and Torrance, K. E. 1981. A reflectance model for computer graphics. Computer Graphics (SIGGRAPH 1981). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Gu, J., Tu, C.-I., Ramamoorthi, R., Belhumeur, P., Matusik, W., and Nayar, S. 2006. Time-varying surface appearance: Acquisition, modeling and rendering. ACM Transactions on Graphics (SIGGGRAPH 2006) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Irony, R., Cohen-Or, D., and Lischinski, D. 2005. Colorization by example. In Proceedings of the Eurographics Symposium on Rendering. Google ScholarGoogle ScholarCross RefCross Ref
  8. Jain, A. K., Murty, M. N., and Flynn, P. J. 1999. Data clustering: A review. ACM Computing Surveys 31, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lafortune, E. P. F, Foo, S.-C., Torrance, K. E., and Greenberg, D. P. 1997. Non-linear approximation of reflectance functions. In Proceedings of ACM SIGGRAPH 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material reprsentation and editing. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Lefebvre, S., and Hoppe, H. 2006. Appearance-space texture synthesis. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics 22, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Transactions on Graphics (SIGGRAPH 2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mount, D. M., and Arya, S., 2006. ANN: A library for Approximate Nearest Neighbor searching.Google ScholarGoogle Scholar
  18. Ngan, A., Durand, F., and Matusik, W. 2006. Image-driven navigation of analytical brdf models. In Proceedings of the Eurographics Symposium on Rendering. Google ScholarGoogle ScholarCross RefCross Ref
  19. Nicodemus, F. E., Richmond, J. C., and HSIA, J. J. 1977. Geometrical considerations and reflectance. National Bureau of Standards.Google ScholarGoogle Scholar
  20. Peers, P., Vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pellacini, F., Ferwerda, J. A., and Greenberg, D. P. 2000. Toward a psychophysically-based light reflection model for image synthesis. In Proceedings of ACM SIGGRAPH 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Phong, B. T. 1975. Illumination for computer generated images. Communications of the ACM 18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Robert, C. P., and Casella, G. 2004. Monte Carlo Statistical Methods. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 5500.Google ScholarGoogle ScholarCross RefCross Ref
  25. Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, 2 ed. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tenenbaum, J. B., de Silva, V., and Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500.Google ScholarGoogle ScholarCross RefCross Ref
  27. Wang, J., Tong, X., Lin, S., Bao, H., Guo, B., and Shum, H.-Y. 2006. Appearance manifolds for modeling time-variant appearance of materials. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Computer Graphics (Proceedings of ACM SIGGRAPH 1992). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Westlund, H. B., and Meyer, G. W. 2001. Applying appearance standards to light reflection models. In Proceedings of ACM SIGGRAPH 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. AppWand: editing measured materials using appearance-driven optimization

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 26, Issue 3
          July 2007
          976 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1276377
          Issue’s Table of Contents

          Copyright © 2007 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 July 2007
          Published in tog Volume 26, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader