skip to main content
article

Symmetrization

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

We present a symmetrization algorithm for geometric objects. Our algorithm enhances approximate symmetries of a model while minimally altering its shape. Symmetrizing deformations are formulated as an optimization process that couples the spatial domain with a transformation configuration space, where symmetries can be expressed more naturally and compactly as parametrized point-pair mappings. We derive closed-form solution for the optimal symmetry transformations, given a set of corresponding sample pairs. The resulting optimal displacement vectors are used to drive a constrained deformation model that pulls the shape towards symmetry. We show how our algorithm successfully symmetrizes both the geometry and the discretization of complex 2D and 3D shapes and discuss various applications of such symmetrizing deformations.

Skip Supplemental Material Section

Supplemental Material

pps063.mp4

mp4

36.6 MB

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Atallah, M. 1985. On symmetry detection. IEEE Trans. on Computers, 663--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Attali, D., Boissonnat, J., and Edelsbrunner, H. 2004. Stability and computation of the medial axis --- a state-of-the-art report. Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.Google ScholarGoogle Scholar
  4. Blum, H. 1967. A transformation for extracting descriptors of shape. In Models for the Perception of Speech and Visual Forms, MIT Press, 362--380.Google ScholarGoogle Scholar
  5. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: Coupled prisms for intuitive surface modeling. In Proc. Symposium on Geometry Processing, 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cox, T., and Cox, M. 1994. Multidimensional Scaling. Chapman and Hall, London.Google ScholarGoogle Scholar
  7. Eggert, D. W., Lorusso, A., and Fisher, R. B. 1997. Estimating 3-d rigid body transformations: a comparison of four major algorithms. In Mach. Vision Appl., vol. 9(5-6), 272--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Faber, G. 1920. Ueber potentialtheorie und konforme abbildung. Sitzungsber. Bayer. Akad. Wiss. Math.-Naturwiss. Kl., 49--64.Google ScholarGoogle Scholar
  9. Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. In Comm. of the ACM, 381--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Funkhouser, T., and Shilane, P. 2006. Partial matching of 3D shapes with priority-driven search. In Symposium on Geometry Processing, 131--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gal, R., and Cohen-Or, D. 2006. Salient geometric features for partial shape matching and similarity. ACM TOG 25, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In SIGGRAPH '97, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grunbaum, B. 1963. Measures of symmetry for convex sets. Proc. Symposium Pure Math. 7, 233--270.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hadwiger, H. 1957. Vorlesungen ueber Inhalt, Oberflaeche und Isoperimetrie. Springer.Google ScholarGoogle Scholar
  15. Hofer, M., Pottmann, H., and Ravani, B. 2004. From curve design algorithms to the design of rigid body motions. The Visual Computer, 279--297. Google ScholarGoogle ScholarCross RefCross Ref
  16. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kazhdan, M. M., Chazelle, B., Dobkin, D. P., Finkelstein, A., and Funkhouser, T. A. 2002. A reflective symmetry descriptor. In ECCV, 642--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3d shape matching. In Sympos. on Geometry Processing, 116--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. 2006. Accurate detection of symmetries in 3d shapes. ACM Trans. Graph. 25, 2, 439--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pauly, M., Keiser, R., and Gross, M. 2003. Multi-scale feature extraction on point-sampled models. In Proceedings of Eurographics, 281--289.Google ScholarGoogle Scholar
  22. Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. 2005. Example-based 3d scan completion. In Symposium on Geometry Processing, 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3d shapes. ACM Trans. Graph. 25, 3, 549--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Schouten, A. 1951. Tensor analysis for physicists. Cambridge Univ. Press.Google ScholarGoogle Scholar
  25. Simari, P., Kalogerakis, E., and Singh, K. 2006. Folding meshes: Hierarchical mesh segmentation based on planar symmetry. In Proc. Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. In Int. Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wolfson, H. J., and Rigoutsos, I. 1997. Geometric hashing: An overview. IEEE Comput. Sci. Eng. 4, 4, 10--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wolter, J., Woo, T., and Volz, R. 1985. Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer, 37--48.Google ScholarGoogle Scholar
  29. Zabrodsky, H., and Weinshall, D. 1997. Using bilateral symmetry to improve 3D reconstruction from image sequences. Computer Vision and Image Understanding: CVIU 67, 1, 48--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Zabrodsky, H., Peleg, S., and Avnir, D. 1995. Symmetry as a continuous feature. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 12, 1154--1166. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Symmetrization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader