skip to main content
article

The axiomatic translation principle for modal logic

Published:01 August 2007Publication History
Skip Abstract Section

Abstract

In this paper we present a translation principle, called the axiomatic translation, for reducing propositional modal logics with background theories, including triangular properties such as transitivity, Euclideanness and functionality, to decidable fragments of first-order logic. The goal of the axiomatic translation principle is to find simplified theories, which capture the inference problems in the original theory, but in a way that can be readily automated and is easier to deal with by existing (first-order) theorem provers than the standard translation. The principle of the axiomatic translation is conceptually very simple and can be almost completely automated. Soundness is automatic under reasonable assumptions, general decidability results can be stated and termination of ordered resolution is easily achieved. The non-trivial part of the approach is proving completeness. We prove results of completeness, decidability, model generation, the small model property and the interpolation property for a number of common and less common modal logics. We also present results of experiments with a number of first-order logic theorem provers which are very encouraging.

References

  1. Bachmair, L. and Ganzinger, H. 2001. Resolution theorem proving. In Handbook of Automated Reasoning, A. Robinson and A. Voronkov, Eds. Elsevier, 19--99.Google ScholarGoogle Scholar
  2. Bachmair, L., Ganzinger, H., and Waldmann, U. 1993. Superposition with simplification as a decision procedure for the monadic class with equality. In Proceedings of the Kurt Gödel Colloquivm. Lecture Notes in Computer Science, vol. 713. Springer, 83--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Balbiani, P. and Herzig, A. 1994. A translation from the modal logic of provability into K4. J. Appl. Nonclassical Logics 4, 1, 73--78.Google ScholarGoogle ScholarCross RefCross Ref
  4. Blackburn, P., de Rijke, M., and Venema, Y. 2001. Modal Logic. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boy de la Tour, T. 1992. An optimality result for clause form translation. J. Symb. Computat. 14, 283--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bry, F. and Yahya, A. 2000. Positive unit hyperresolution tableaux for minimal model generation. J. Autom. Reason. 25, 1, 35--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Castilho, M. A., Fariñas del Cerro, L., Gasquet, O., and Herzig, A. 1997. Modal tableaux with propagation rules and structural rules. Fundamenta Informaticae 3--4, 32, 281--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chellas, B. F. 1980. Modal Logic: An Introduction. Cambridge University Press.Google ScholarGoogle ScholarCross RefCross Ref
  9. De Giacomo, G. 1996. Eliminating “converse” from converse PDL. J. Logic, Lang. Inform. 5, 2, 193--208.Google ScholarGoogle ScholarCross RefCross Ref
  10. De Nivelle, H. and de Rijke, M. 1999. Deciding the guarded fragments by resolution. J. Symb. Computat. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. De Nivelle, H., Schmidt, R. A., and Hustadt, U. 2000. Resolution-based methods for modal logics. Logic J. IGPL 8, 3, 265--292.Google ScholarGoogle ScholarCross RefCross Ref
  12. Demri, S. 2001. The complexity of regularity in grammar logics and related modal logics. J. Logic Computat. 11, 6, 933--960.Google ScholarGoogle ScholarCross RefCross Ref
  13. Demri, S. and de Nivelle, H. 2003. Deciding regular grammar logics with converse through first-order logic. Resear. rep. LSV-03-4, Spécification et Vérification, CNRS & ENS de Cachan, France.Google ScholarGoogle Scholar
  14. Demri, S. and Goré, R. 1999. Tractable transformations from modal provability logics into first-order logic. In Proceedings of the International Conference on Automated Deduction (CADE-16). Lecture Notes in Artificial Intelligence, vol. 1632. Springer, 16--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Demri, S. and Orlowska, E. 1999. Every finitely reducible logic has the finite model property with respect to the class of ⋄-formulae. Studia Logica 62, 177--200.Google ScholarGoogle ScholarCross RefCross Ref
  16. Gabbay, D. M. 1975. Decidability results in nonclassical logics. Ann. Math. Logic 8, 237--295.Google ScholarGoogle ScholarCross RefCross Ref
  17. Ganzinger, H. and de Nivelle, H. 1999. A superposition decision procedure for the guarded fragment with equality. In Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS'99). IEEE Computer Society, 295--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ganzinger, H., Meyer, C., and de Nivelle, H. 1999. The two-variable guarded fragment with transitive relations. In Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS'99). IEEE Computer Society, 24--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Georgieva, L., Hustadt, U., and Schmidt, R. A. 2001. Computational space efficiency and minimal model generation for guarded formulae. In Proceedings of the International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR'01). Lecture Notes in Artificial Intelligence, vol. 2250. Springer, 85--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Georgieva, L., Hustadt, U., and Schmidt, R. A. 2002. A new clausal class decidable by hyperresolution. In Proceedings of the International Conference on Automated Deduction (CADE-18). Lecture Notes in Artificial Intelligence, vol. 2392. Springer, 260--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Goldblatt, R. 1987. Logics of Time and Computation. CSLI Lecture Notes, vol. 7. Chicago University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Goranko, V. and Passy, S. 1992. Using the universal modality: Gains and questions. J. Logic Computat. 2, 1, 5--30.Google ScholarGoogle ScholarCross RefCross Ref
  23. Goré, R. 1999. Tableau methods for modal and temporal logics. In Handbook of Tableau Methods, M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga, Eds. Kluwer, 297--396.Google ScholarGoogle Scholar
  24. Grädel, E. 1999. On the restraining power of guards. J. Symb. Logic 64, 1719--1742.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hughes, G. E. and Cresswell, M. J. 1996. A New Introduction to Modal Logic. Routledge, London, UK.Google ScholarGoogle Scholar
  26. Hustadt, U., Dixon, C., Schmidt, R. A., and Fisher, M. 2000. Normal forms and proofs in combined modal and temporal logics. In Proceedings of FroCoS. Lecture Notes in Artificial Intelligence, vol. 1794. Springer, 73--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hustadt, U. and Schmidt, R. A. 1999a. An empirical analysis of modal theorem provers. J. Appl. Nonclassical Logics 9, 4, 479--522.Google ScholarGoogle ScholarCross RefCross Ref
  28. Hustadt, U. and Schmidt, R. A. 1999b. Maslov's class K revisited. In Proceedings of the International Conference on Automated Deduction (CADE-16). Lecture Notes in Artifical Intelligence, vol. 1632. Springer, 172--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hustadt, U. and Schmidt, R. A. 1999c. On the relation of resolution and tableaux proof systems for description logics. In Proceedings of IJCAI'99. Morgan Kaufmann, 110--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hustadt, U. and Schmidt, R. A. 2000a. Issues of decidability for description logics in the framework of resolution. In Automated Deduction in Classical and Nonclassical Logics. Lecture Notes in Artificial Intelligence, vol. 1761. Springer, 191--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hustadt, U. and Schmidt, R. A. 2000b. MSPASS: Modal reasoning by translation and first-order resolution. In Proceedings of TABLEAUX. Lecture Notes in Artificial Intelligence, vol. 1847. Springer, 67--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Hustadt, U. and Schmidt, R. A. 2002. Using resolution for testing modal satisfiability and building models. J. Autom. Reason. 28, 2, 205--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kracht, M. 1995. Highway to the danger zone. J. Logic Computat. 5, 1, 93--109.Google ScholarGoogle ScholarCross RefCross Ref
  34. Kracht, M. 1999. Tools and Techniques in Modal Logic. Studies in Logic, vol. 142. Elsevier.Google ScholarGoogle Scholar
  35. Kracht, M. 2001. Reducing modal consequence relations. J. Logic Computat. 11, 6, 879--907.Google ScholarGoogle ScholarCross RefCross Ref
  36. Kracht, M. 2002. Notes on the space requirements for checking satisfiability in modal logics. In Advances in Modal Logic, Vol. 4, P. Balbiani, N.-Y. Suzuki, and F. Wolter, Eds. King's College Publications, London, 243--264.Google ScholarGoogle Scholar
  37. Kracht, M. and Wolter, F. 1997. Simulation and transfer results in modal logic---a survey. Studia Logica 59, 2, 149--177.Google ScholarGoogle ScholarCross RefCross Ref
  38. Leitsch, A. 1997. The Resolution Calculus. EATCS Texts in Theoretical Computer Science. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Letz, R. and Stenz, G. 2001. DCTP: A disconnection calculus theorem prover. In Proceedings of the International Joint Conference on Automated Reasoning (IJCAR'01). Lecture Notes in Artificial Intelligence, vol. 2083. Springer, 381--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Lewis, H. R. 1980. Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21, 317--353.Google ScholarGoogle ScholarCross RefCross Ref
  41. Lutz, C. 1999. Complexity of terminological reasoning revisited. In Proceeding of the International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR'99). Lecture Notes in Artificial Intelligence, vol. 1705. Springer, 181--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Lutz, C. and Sattler, U. 2002. The complexity of reasoning with boolean modal logics. In Advances in Modal Logics Volume 3, F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, Eds. CSLI Publications, Stanford.Google ScholarGoogle Scholar
  43. Massacci, F. 2000. Single step tableaux for modal logics: Computational properties, complexity and methodology. J. Autom. Reason. 24, 3, 319--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Nonnengart, A., Ohlbach, H. J., and Szalas, A. 1997. Quantifier elimination for second-order predicate logic. In Logic, Language and Reasoning: Essays in Honour of Dov Gabbay. To appear, Kluwer.Google ScholarGoogle Scholar
  45. Ohlbach, H. J. 1998. Combining Hilbert style and semantic reasoning in a resolution framework. In Proceedings of the International Conference on Automated Deduction (CADE-15). Lecture Notes in Artificial Intelligence, vol. 1421. Springer, 205--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Ohlbach, H. J., Nonnengart, A., de Rijke, M., and Gabbay, D. 2001. Encoding two-valued nonclassical logics in classical logic. In Handbook of Automated Reasoning, A. Robinson and A. Voronkov, Eds. Elsevier, 1403--1486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Plaisted, D. A. and Greenbaum, S. 1986. A structure-preserving clause form translation. J. Symb. Computat. 2, 293--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Riazanov, A. and Voronkov, A. 1999. Vampire. In Proceedings of the International Conference on Automated Deduction (CADE-16). Lecture Notes in Artificial Intelligence, vol. 1632. Springer, 292--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Robinson, A. and Voronkov, A., Eds. 2001. Handbook of Automated Reasoning. Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sahlqvist, H. 1975. Completeness and correspondence in the first and second-order semantics for modal logics. In Proceedings of Scandinavian Logic Symposium 1973, S. Kanger, Ed. North-Holland, 110--143.Google ScholarGoogle ScholarCross RefCross Ref
  51. Schmidt, R. A. and Hustadt, U. 2000. A resolution decision procedure for fluted logic. In Proceedings of the International Conference on Automated Deduction (CADE-17). Lecture Notes in Artificial Intelligence, vol. 1831. Springer, 433--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Schmidt, R. A. and Hustadt, U. 2003. Mechanised reasoning and model generation for extended modal logics. In Theory and Applications of Relational Structures as Knowledge Instruments. Lecture Notes in Computer Science, vol. 2929. Springer, 38--67.Google ScholarGoogle Scholar
  53. Schulz, S. 2002. E: A Brainiac theorem prover. J. AI Comm. 15, 2--3, 111--126.Google ScholarGoogle Scholar
  54. Socher-Ambrosius, R. and Johann, P. 1997. Deduction Systems. Graduate Texts in Computer Science. Springer, New York.Google ScholarGoogle Scholar
  55. Stenz, G. 2002. DCTP 1.2: System abstract. In Proceedings of TABLEAUX 2002. Lecture Notes in Artificial Intelligence, vol. 2381. Springer, 335--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., and Topic, D. 2002. SPASS version 2.0. In Proceedings of the International Conference on Automated Deduction (CADE-18). Lecture Notes in Artificial Intelligence, vol. 2392. Springer, 275--279. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The axiomatic translation principle for modal logic

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Computational Logic
              ACM Transactions on Computational Logic  Volume 8, Issue 4
              August 2007
              225 pages
              ISSN:1529-3785
              EISSN:1557-945X
              DOI:10.1145/1276920
              Issue’s Table of Contents

              Copyright © 2007 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 1 August 2007
              Published in tocl Volume 8, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader