skip to main content
research-article

Interactive Hausdorff distance computation for general polygonal models

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a simple algorithm to compute the Hausdorff distance between complicated, polygonal models at interactive rates. The algorithm requires no assumptions about the underlying topology and geometry. To avoid the high computational and implementation complexity of exact Hausdorff distance calculation, we approximate the Hausdorff distance within a user-specified error bound. The main ingredient of our approximation algorithm is a novel polygon subdivision scheme, called Voronoi subdivision, combined with culling between the models based on bounding volume hierarchy (BVH). This cross-culling method relies on tight yet simple computation of bounds on the Hausdorff distance, and it discards unnecessary polygon pairs from each of the input models alternatively based on the distance bounds. This algorithm can approximate the Hausdorff distance between polygonal models consisting of tens of thousands triangles with a small error bound in real-time, and outperforms the existing algorithm by more than an order of magnitude. We apply our Hausdorff distance algorithm to the measurement of shape similarity, and the computation of penetration depth for physically-based animation. In particular, the penetration depth computation using Hausdorff distance runs at highly interactive rates for complicated dynamics scene.

Skip Supplemental Material Section

Supplemental Material

tps077_09.mp4

mp4

45 MB

References

  1. Agarwal, P. K., S. Har-Peled, Sharir, M., and Wang, Y. 2003. Hausdorff distance under translation for points, disks, and balls. In Proc. 19th Annu. ACM Sympos. Comput. Geom., 282--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2003. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9, 1, 3--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alt, H., and Guibas, L. J. 2000. Discrete geometric shapes: Matching, interpolation, and approximation. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds. Elsevier Science Publishers B. V. North-Holland, Amsterdam, 121--153.Google ScholarGoogle Scholar
  4. Alt, H., Behrends, B., and Blömer, J. 1995. Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13, 251--266.Google ScholarGoogle ScholarCross RefCross Ref
  5. Alt, H., Brass, P., Godau, M., Knauer, C., and Wenk, C. 2003. Computing the Hausdorff distance of geometric patterns and shapes. In Discrete and Computational Geometry., vol. 25. 65--76.Google ScholarGoogle Scholar
  6. Aspert, N., Santa-Cruz, D., and Ebrahimi, T. 2002. Mesh: Measuring errors between surfaces using the hausdorff distance. In Proceedings of the IEEE International Conference on Multi-media and Expo, 705--708.Google ScholarGoogle Scholar
  7. Atallah, M. J. 1983. A linear time algorithm for the Hausdorff distance between convex polygons. Inf. Process. Lett. 17, 207--209.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chew, L. P., Goodrich, M. T., Huttenlocher, D. P., Kedem, K., Kleinberg, J. M., and Kravets, D. 1997. Geometric pattern matching under Euclidean motion. Computational Geometry: Theory and Applications 7, 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cignoni, P., Rocchini, C., and Scopigno, R. 1998. Metro: Measuring error on simplified surfaces. Computer Graphics Forum 17, 2, 167--174.Google ScholarGoogle ScholarCross RefCross Ref
  10. Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, F., and Wright, W. 1996. Simplification envelopes. In Proc. of ACM Siggraph'96, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ehmann, S., and Lin, M. C. 2001. Accurate and fast proximity queries between polyhedra using convex surface decomposition. Computer Graphics Forum (Proc. of Eurographics'2001) 20, 3, 500--510.Google ScholarGoogle Scholar
  12. Fisher, S., and Lin, M. C. 2001. Fast penetration depth estimation for elastic bodies using deformed distance fields. Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems 2001.Google ScholarGoogle Scholar
  13. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proc. of ACM SIGGRAPH, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Godau, M. 1998. On the complexity of measuring the similarity between geometric objects in higher dimensions. PhD thesis, Freie Universität.Google ScholarGoogle Scholar
  15. Goodrich, M. T., Mitchell, J. S. B., and Orletsky, M. W. 1999. Approximate geometric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 37--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. In ACM SIGGRAPH, ACM, New York, NY, USA, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Guthe, M., Borodin, P., and Klein, R. 2005. Fast and accurate Hausdorff distance calculation between meshes. In International Conferences in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), 41--48.Google ScholarGoogle Scholar
  18. Hippmann, G. 2004. An algorithm for compliant contact between complexly shaped bodies. Multibody System Dynamics 12, 4.Google ScholarGoogle ScholarCross RefCross Ref
  19. Huttenlocher, D. P., Kedem, K., and Kleinberg, J. M. 1992. On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under Euclidean motion in the plane. In ACM Symposium on Computational Geometry, 110--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Huttenlocher, D. P., Kedem, K., and Sharir, M. 1993. The upper envelope of Voronoi surfaces and its applications. Discrete and Computational Geometry 9, 267--291.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Huttenlocher, D. P., Klanderman, G. A., and Rucklidge, W. J. 1993. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850--863. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jesorsky, O., Kirchberg, K., Frischholz, R., et al. 2001. Robust face detection using the Hausdorff distance. Lecture Notes in Computer Science, 90--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., and Yap, C. 2008. Classroom examples of robustness problems in geometric computations. Comput. Geom. Theory Appl. 40, 1, 61--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kim, Y. J., Otaduy, M. A., Lin, M. C., and Manocha, D. 2002. Fast penetration depth computation for physically-based animation. Proc. of ACM Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Larsen, E., Gottschalk, S., Lin, M., and Manocha, D. 2000. Distance queries with rectangular swept sphere volumes. Proc. of IEEE Int. Conference on Robotics and Automation.Google ScholarGoogle Scholar
  26. Lin, M., and Manocha, D. 2003. Collision and proximity queries. In Handbook of Discrete and Computational Geometry.Google ScholarGoogle Scholar
  27. Llanas, B. 2005. Efficient computation of the Hausdorff distance between polytopes by exterior random covering. Comput. Optim. Appl. 30, 2, 161--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lopez, M. A., and Reisner, S. 2008. Hausdorff approximation of 3D convex polytopes. Inf. Process. Lett. 107, 2, 76--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Luebke, D., Watson, B., Cohen, J., Reddy, M., and Varshney, A. 2002. Level of detail for 3D graphics. Elsevier Science Inc. New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Moore, M., and Wilhelms, J. 1988. Collision detection and response for computer animation. In Computer Graphics (SIGGRAPH '88 Proceedings), J. Dill, Ed., vol. 22, 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. NVIDIA. 2009. PhysX. http://www.nvidia.com.Google ScholarGoogle Scholar
  32. Redon, S. 2004. Fast continuous collision detection and handling for desktop virtual prototyping. Virtual Real. 8, 1, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rucklidge, W. J. 1996. Lower bounds for the complexity of the graph of the Hausdorff distance as a function of transformation. Discrete and Computational Geometry 16, 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tang, M., and Kim, Y. J. 2009. Deriving upper and lower bounds of Hausdorff distance for polygonal models. Tech. rep. CSE-TR-2009-01, Ewha Womans University, Seoul, Korea.Google ScholarGoogle Scholar
  35. Varadhan, G., and Manocha, D. 2004. Accurate Minkowski sum approximation of polyhedral models. In Pacific Graphics, 392--401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wald, I., Boulos, S., and Shirley, P. 2007. Ray tracing deformable scenes using dynamic bounding volume hierarchies. ACM Trans. Graph. 26, 1, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhang, L., Kim, Y. J., Varadhan, G., and Manocha, D. 2007. Generalized penetration depth computation. Computer-Aided Design 39, 8, 625--638. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zitová, B., and Flusser, J. 2003. Image registration methods: a survey. Image and Vision Computing 21, 11, 977--1000.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Interactive Hausdorff distance computation for general polygonal models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 28, Issue 3
        August 2009
        750 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1531326
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2009
        Published in tog Volume 28, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader