skip to main content
research-article

Interactive simulation of surgical needle insertion and steering

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present algorithms for simulating and visualizing the insertion and steering of needles through deformable tissues for surgical training and planning. Needle insertion is an essential component of many clinical procedures such as biopsies, injections, neurosurgery, and brachytherapy cancer treatment. The success of these procedures depends on accurate guidance of the needle tip to a clinical target while avoiding vital tissues. Needle insertion deforms body tissues, making accurate placement difficult. Our interactive needle insertion simulator models the coupling between a steerable needle and deformable tissue. We introduce (1) a novel algorithm for local remeshing that quickly enforces the conformity of a tetrahedral mesh to a curvilinear needle path, enabling accurate computation of contact forces, (2) an efficient method for coupling a 3D finite element simulation with a 1D inextensible rod with stick-slip friction, and (3) optimizations that reduce the computation time for physically based simulations. We can realistically and interactively simulate needle insertion into a prostate mesh of 13,375 tetrahedra and 2,763 vertices at a 25 Hz frame rate on an 8-core 3.0 GHz Intel Xeon PC. The simulation models prostate brachytherapy with needles of varying stiffness, steering needles around obstacles, and supports motion planning for robotic needle insertion. We evaluate the accuracy of the simulation by comparing against real-world experiments in which flexible, steerable needles were inserted into gel tissue phantoms.

Skip Supplemental Material Section

Supplemental Material

tps063_09.mp4

mp4

60.8 MB

References

  1. Abolhassani, N., Patel, R. V., and Moallem, M. 2007. Needle insertion into soft tissue: A survey. Medical Engineering & Physics 29, 4 (May), 413--431.Google ScholarGoogle Scholar
  2. Akima, H. 1970. A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17, 4 (Oct.), 589--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., and Grisoni, L. 2007. SOFA---An open source framework for medical simulation. In Medicine Meets Virtual Reality 15, IOS Press, 13--18.Google ScholarGoogle Scholar
  4. Alterovitz, R., and Goldberg, K. 2008. Motion Planning in Medicine: Optimization and Simulation Algorithms for Image-Guided Procedures, vol. 50 of Springer Tracts in Advanced Robotics. Springer, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Alterovitz, R., Pouliot, J., Taschereau, R., Hsu, I.-C., and Goldberg, K. 2003. Simulating needle insertion and radioactive seed implantation for prostate brachytherapy. In Medicine Meets Virtual Reality 11, IOS Press, 19--25.Google ScholarGoogle Scholar
  6. Alterovitz, R., Goldberg, K., and Okamura, A. M. 2005. Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In IEEE International Conference on Robotics and Automation, 1652--1657.Google ScholarGoogle Scholar
  7. Alterovitz, R., Siméon, T., and Goldberg, K. 2007. The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty. In Robotics: Science and Systems III, 233--241.Google ScholarGoogle Scholar
  8. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Transactions on Graphics 26, 3 (July), 16:1--16:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Transactions on Graphics 27, 3 (Aug.), 63:1--63:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Transaction on Graphics 25, 3 (July), 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bertails, F. 2009. Linear time super-helices. Computer Graphics Forum 28, 2 (Apr.), 417--426.Google ScholarGoogle ScholarCross RefCross Ref
  12. Cavusoglu, M. C., Göktekin, T. G., and Tendick, F. 2006. GiPSi: A framework for open source/open architecture software development for organ level surgical simulation. IEEE Transactions on Information Technology in Biomedicine 10, 2 (Apr.), 312--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Crouch, J. R., Schneider, C. M., Wainer, J., and Okamura, A. M. 2005. A velocity-dependent model for needle insertion in soft tissue. In Medical Image Computing and Computer-Assisted Intervention, vol. 3749 of LNCS. Springer, Berlin, Oct., 624--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cuthill, E., and McKee, J. 1969. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 24th National Conference, ACM, New York, 157--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. 2000. Adaptive simulation of soft bodies in real-time. In Computer Animation 2000, 15--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dehghan, E., and Salcudean, S. E. 2007. Needle insertion point and orientation optimization in non-linear tissue with application to brachytherapy. In 2007 IEEE International Conference on Robotics and Automation, 2267--2272.Google ScholarGoogle Scholar
  17. DiMaio, S. P., and Salcudean, S. E. 2005. Needle steering and motion planning in soft tissues. IEEE Transactions on Biomedical Engineering 52, 6 (June), 965--974.Google ScholarGoogle ScholarCross RefCross Ref
  18. Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., Smith, C. D., and Satava, R. M. 2005. Virtual reality simulation for the operating room: Proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery 241, 2 (Feb.), 364--372.Google ScholarGoogle ScholarCross RefCross Ref
  19. Goksel, O., Salcudean, S. E., and DiMaio, S. P. 2006. 3D simulation of needle-tissue interaction with application to prostate brachytherapy. Computer Aided Surgery 11, 6 (Nov.), 279--288.Google ScholarGoogle ScholarCross RefCross Ref
  20. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics 23, 3 (Aug.), 463--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Grégoire, M., and Schömer, E. 2006. Interactive simulation of one-dimensional flexible parts. Proceedings of the 2006 Symposium on Solid and Physical Modeling, 95--103 (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hauser, K., Alterovitz, R., Chentanez, N., Okamura, A., and Goldberg, K. 2009. Feedback control for steering needles through 3D deformable tissue using helical paths. In Robotics: Science and Systems V.Google ScholarGoogle Scholar
  23. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 Symposium on Computer Animation, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Transactions on Graphics 26, 3, 13:1--13:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Karypis, G., and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20, 1 (Aug.), 359--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Klingner, B. M., and Shewchuk, J. R. 2007. Aggressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable, 3--23.Google ScholarGoogle Scholar
  27. Kohn, L. T., Corrigan, J. M., and Donaldson, M. S. 2000. To Err Is Human: Building a Safer Health System. New York: National Academy.Google ScholarGoogle Scholar
  28. Krouskop, T. A., Wheeler, T. M., Kallel, F., Garria, B. S., and Hall, T. 1998. Elastic moduli of breast and prostate tissues under compression. Ultrasonic Imaging 20, 4 (Oct.), 260--274.Google ScholarGoogle ScholarCross RefCross Ref
  29. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 26, 3 (July), 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lindblad, A., and Turkiyyah, G. 2007. A physically-based framework for real-time haptic cutting and interaction with 3D continuum models. In Proceedings of the 2007 Symposium on Solid and Physical Modeling, ACM, New York, 421--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Loock, A., and Schömer, E. 2001. A virtual environment for interactive assembly simulation: From rigid bodies to deformable cables. In 5th World Multiconference on Systemics, Cybernetics and Informatics, 325--332.Google ScholarGoogle Scholar
  32. Marchal, M., Promayon, E., and Troccaz, J. 2006. Simulating prostate surgical procedures with a discrete soft tissue model. In Third Eurographics Workshop in Virtual Reality Interactions and Physical Simulations, 109--118.Google ScholarGoogle Scholar
  33. Marcia, R. F. 2008. On solving sparse symmetric linear systems whose definiteness is unknown. Applied Numerical Mathematics 58, 4 (Apr.), 449--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mendoza, C., and Laugier, C. 2003. Simulating soft tissue cutting using finite element models. In 2003 IEEE International Conference on Robotics and Automation, 1109--1114.Google ScholarGoogle Scholar
  35. Müller, M., and Gross, M. H. 2004. Interactive virtual materials. In Graphics Interface 2004, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the 2002 Symposium on Computer Animation, ACM, New York, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Nienhuys, H.-W., and van der Stappen, A. F. 2001. A surgery simulation supporting cuts and finite element deformation. In Medical Image Computing and Computer-Assisted Intervention, 4th International Conference, 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Nienhuys, H.-W., and van der Stappen, A. 2004. A computational technique for interactive needle insertions in 3D nonlinear material. In IEEE International Conference on Robotics and Automation, vol. 2, 2061--2067.Google ScholarGoogle Scholar
  39. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Computer Graphics (SIGGRAPH '99 Proceedings), ACM Press, New York, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. In Computer Graphics (SIGGRAPH 2002 Proceedings), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pai, D. K. 2002. STRANDS: Interactive simulation of thin solids using Cosserat models. Computer Graphics Forum 21, 3 (Sept.), 347--352.Google ScholarGoogle ScholarCross RefCross Ref
  42. Paige, C. C., and Saunders, M. A. 1975. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis 12, 4 (Sept.), 617--629.Google ScholarGoogle ScholarCross RefCross Ref
  43. Parthasarathy, V. N., Graichen, C. M., and Hathaway, A. F. 1994. A comparison of tetrahedron quality measures. Finite Elements in Analysis and Design 15, 3 (Jan.), 255--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Picinbono, G., Delingette, H., and Ayache, N. 2003. Non-linear anisotropic elasticity for real-time surgery simulation. Graphical Models 65, 5 (Sept.), 305--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Reed, K. B., Kallem, V., Alterovitz, R., Goldberg, K., Okamura, A. M., and Cowan, N. J. 2008. Integrated planning and image-guided control for planar needle steering. In Proceedings of the Second IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 819--824.Google ScholarGoogle Scholar
  46. Satava, R. M. 2005. Identification and reduction of surgical error using simulation. Minimally Invasive Therapy & Allied Technologies 14, 4--5 (Sept.), 257--261.Google ScholarGoogle Scholar
  47. Seymour, N. E., Gallagher, A. G., Roman, S. A., O'Brien, M. K., Bansal, V. K., Andersen, D. K., and Satava, R. M. 2002. Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery 236, 4 (Oct.), 458--463.Google ScholarGoogle ScholarCross RefCross Ref
  48. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the 2007 Symposium on Computer Animation, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Simone, C., and Okamura, A. M. 2002. Modeling of needle insertion forces for robot-assisted percutaneous therapy. In IEEE International Conference on Robotics and Automation, 2085--2091.Google ScholarGoogle Scholar
  50. Spillmann, J., and Teschner, M. 2007. CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of the 2007 Symposium on Computer Animation, Eurographics Association, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Spillmann, J., and Teschner, M. 2008. An adaptive contact model for the robust simulation of knots. Computer Graphics Forum 27, 2 (April), 497--506.Google ScholarGoogle ScholarCross RefCross Ref
  52. Taschereau, R., Pouliot, J., Roy, J., and Tremblay, D. 2000. Seed misplacement and stabilizing needles in transperineal permanent prostate implants. Radiotherapy and Oncology 55, 1 (Apr.), 59--63.Google ScholarGoogle ScholarCross RefCross Ref
  53. Taylor, R. H. 2006. A perspective on medical robotics. Proceedings of the IEEE 94, 9 (Sept.), 1652--1664.Google ScholarGoogle ScholarCross RefCross Ref
  54. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (SIGGRAPH '87 Proceedings), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Vidal, F. P., John, N. W., Healey, A. E., and Gould, D. A. 2008. Simulation of ultrasound guided needle puncture using patient specific data with 3D textures and volume haptics. Computer Animation and Virtual Worlds 19, 2 (May), 111--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Wang, X., and Fenster, A. 2004. A virtual reality based 3D real-time interactive brachytherapy simulation of needle insertion and seed implantation. In 2004 IEEE International Symposium on Biomedical Imaging, 280--283.Google ScholarGoogle Scholar
  57. Webster III, R. J., Memisevic, J., and Okamura, A. M. 2005. Design considerations for robotic needle steering. In 2005 IEEE International Conference on Robotics and Automation, 3588--3594.Google ScholarGoogle Scholar
  58. Webster III, R. J., Okamura, A. M., Cowan, N. J., Chirikjian, G. S., Goldberg, K., and Alterovitz, R., 2005. Distal bevel-tip needle control device and algorithm. U.S. patent application number 11/436, 995, May.Google ScholarGoogle Scholar
  59. Webster III, R. J., Kim, J. S., Cowan, N. J., Chirikjian, G. S., and Okamura, A. M. 2006. Nonholonomic modeling of needle steering. Int. Journal of Robotics Research 25, 5--6 (May), 509--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics 27, 3 (Aug.), 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive simulation of surgical needle insertion and steering

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 28, Issue 3
            August 2009
            750 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1531326
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2009
            Published in tog Volume 28, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader