skip to main content
10.1145/1577190.1577203acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination

Published:03 August 2009Publication History

ABSTRACT

Recently quantifier elimination (QE) has been of great interest in many fields of science and engineering. In this paper an effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm and its variant specially designed for QE are proposed based on the authors' previous work and our implementation of those is reported. Based on analysing experimental performances, we are improving our design/synthesis of the SNCAD for its practical realization with existing efficient computational techniques and several newly introduced ones. The practicality of the SNCAD is now examined by a number of experimental results including practical engineering problems, which also reveals the quality of the implementation.

References

  1. H. Anai and S. Hara. Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination. In Proceedings of American Control Conference 2000, pp. 1312--1316, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  2. H. Anai and P. A. Parrilo. Convex quantifier elimination for semidefinite programming. In Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing 2003. pp. 3--11, 2003.Google ScholarGoogle Scholar
  3. H. Anai, H. Yanami, K. Sakabe, and S. Hara. Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox (invited paper). In Proceedings of CCA/ISIC/CACSD 2004 (Taipei, Taiwan), pp. 1540--1545, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. Anai and K. Yokoyama. Numerical cylindrical algebraic decomposition with certificated reconstruction. In Proceedings of 11th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics (Fukuoka, Japan), pp. 31, 2004.Google ScholarGoogle Scholar
  5. H. Anai and K. Yokoyama. Cylindrical algebraic decomposition via numerical computation with validated symbolic reconstruction. In Proceedings of the A3L 2005, pp. 25--30, 2005.Google ScholarGoogle Scholar
  6. C. W. Brown. Solution formula construction for truth-invariant CADs. PhD thesis, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. W. Brown. Improved projection for cylindrical algebraic decomposition. J. Symb. Comput., 32(5):447--465, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. W. Brown. QEPCAD B - a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bulletin, 37(4):97--108, Dec. 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Caviness and J. Johnson, editors. Quantifier elimination and cylindrical algebraic decomposition. Texts and monographs in symbolic computation. Springer-Verlag, 1998.Google ScholarGoogle Scholar
  10. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition - preliminary report. SIGSAM Bull., 8(3):80--90, 1974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput., 12(3):299--328, Sep. 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. E. Collins, J. R. Johnson, and W. Krandick. Interval arithmetic in cylindrical algebraic decomposition. J. Symb. Comput., 34(2):145--157, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in practice. In B. H. Matzat, G.-M. Greuel, and G. Hiss, editors, Algorithmic Algebra and Number Theory, pp. 221--247. Springer, Berlin, 1998.Google ScholarGoogle Scholar
  14. A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for CAD. In Proceedings of ISSAC 2004, pp. 111--118, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. D. Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in algebraic number fields. In B. F. Caviness, editor, European Conference on Computer Algebra (2), Lecture Notes in Computer Science, 204:289--290. Springer, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Duval. Algebraic numbers: an example of dynamic evaluation. J. Symb. Comput., 18:429--445, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J.-C. Faugère, G. Moroz, F. Rouillier and M. S. El Din. Classification of the perspective-three-point problem, discriminant variety and real solving polynomial systems of inequalities. In Proceedings of ISSAC 2008, pp. 79--86, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. González-Vega. Applying quantifier elimination to the Birkhoff interpolation problem. J. Symb. Comput., 22(1):83--103 1966. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. González-Vega. A combinatorial algorithm solving some quantifier elimination problems. In B. F. Caviness and J. R. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pp. 365--375. Springer, Wien, New York, 1998.Google ScholarGoogle Scholar
  20. H. Hong. Efficient method for analyzing topology of plane real algebraic curves. In the International Symposium on Symbolic and Algebraic Computation (ISSAC 93), pp. 264--274, 1993.Google ScholarGoogle Scholar
  21. H. Hong. Quantifier elimination for formulas constrained by quadratic equations. In Manuel Bronstein, editor, Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 93), pp. 264--274, Kiev, Ukraine, ACM, ACM Press, Jul. 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Krawczyk. Newton-Algorithmen zur Bcstimmung yon Nullstellen mit Fehlerschranken. Computing, 4:187-201, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. B. Lasserre. Global optimization with polynomials and the problems of moments. SIAM Journal on Optimization, 11:796--817, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer Journal, Special issue on computational quantifier elimination, 36(5):450--462, 1993.Google ScholarGoogle Scholar
  25. R. E. Moore. A test for existence of solutions to nonlinear systems. SlAM J. Numer. Anal., 14(4):611--615, Sep. 1977.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. E. Moore, and S. T. Jones. Safe starting regions for iterative methods. SIAM J. Numer. Anal., 14(6):1051--1065, Dec. 1977.Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Parrilo, and S. Lall. Semidefinite Programming Relaxation and Algebraic Optimization in Control. Mini-course on Polynomial Equations and Inequalities I and II, MTNS, 2006.Google ScholarGoogle Scholar
  28. S. Ratschan. Approximate quantified constraint solving by cylindrical box decomposition. Reliable Computing, 8(1):21--42, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. M. Rump. Algebraic computation, numerical computation and verified inclusions. In R. Janssen, editor, Trends in Computer Algebra, Lecture Notes in Computer Science, 296:177--197. Springer-Verlag, New York, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. M. Rump. Computer-assisted proofs and self-validating methods. In B. Einarsson, editor, Accuracy and Reliability in Scientific Computing, Vol. 18 of Software, Environments, Tools, Chap. 10, pp. 195--240. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005.Google ScholarGoogle Scholar
  31. A. W. Strzeboński. A real polynomial decision algorithm using arbitrary-precision floating point arithmetic. Reliable Computing, 5(3):337--346, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  32. A. W. Strzeboński. Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput., 41(9):1021--1038, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  33. T. Sturm and V. Weispfenning. Rounding and blending of solids by a real elimination method. Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling, and Applied Mathematics (IMACS 97), 2:727--732, Aug. 1997.Google ScholarGoogle Scholar
  34. V. Weispfenning. The complexity of linear problems in fields. J. Symb. Comput., 5(1-2):3--27, Feb.-Apr. 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. V. Weispfenning. Simulation and optimization by quantifier elimination. J. Symb. Comput., 24:208, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. V. Weispfenning. Quantifier elimination for real algebra - the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing, 8(2):85--101, Feb. 1997.Google ScholarGoogle ScholarCross RefCross Ref
  37. H. Yanami and H. Anai. Development of SyNRAC - formula description and new functions. In Proceedings of International Workshop on Computer Algebra Systems and their Applications (CASA) 2004: ICCS 2004, LNCS 3039, pp. 286--294. Springer, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  38. H. Yanami and H. Anai. The Maple package SyNRAC and its application to robust control design. Future Generation Comp. Syst., 23(5):721--726, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SNC '09: Proceedings of the 2009 conference on Symbolic numeric computation
        August 2009
        210 pages
        ISBN:9781605586649
        DOI:10.1145/1577190

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 August 2009

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader