skip to main content
10.1145/1661412.1618468acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Aggregate dynamics for dense crowd simulation

Published:01 December 2009Publication History

ABSTRACT

Large dense crowds show aggregate behavior with reduced individual freedom of movement. We present a novel, scalable approach for simulating such crowds, using a dual representation both as discrete agents and as a single continuous system. In the continuous setting, we introduce a novel variational constraint called unilateral incompressibility, to model the large-scale behavior of the crowd, and accelerate inter-agent collision avoidance in dense scenarios. This approach makes it possible to simulate very large, dense crowds composed of up to a hundred thousand agents at near-interactive rates on desktop computers.

Skip Supplemental Material Section

Supplemental Material

c91-f91_1-a42-suppvideo.mov

Supplemental video for Aggregate dynamics for dense crowd simulation

mov

103.4 MB

References

  1. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bayazit, O. B., Lien, J.-M., and Amato, N. M. 2002. Better group behaviors in complex environments with global roadmaps. Proc. 8th Intl. Conf. Artificial Life, 362--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bridson, R., and Müller-Fischer, M. 2007. Fluid simulation. In ACM SIGGRAPH 2007 courses, 1--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chenney, S. 2004. Flow tiles. Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cordeiro, O. C., Braun, A., Silveria, C. B., Musse, S. R., and Cavalheiro, G. G. 2005. Concurrency on social forces simulation model. First Intl. Workshop on Crowd Simulation.Google ScholarGoogle Scholar
  6. Dostál, Z., and Schöberl, J. 2005. Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput. Optim. Appl. 30, 1, 23--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Feurtey, F. 2000. Simulating the Collision Avoidance Behavior of Pedestrians. Master's thesis, University of Tokyo, School of Engineering.Google ScholarGoogle Scholar
  8. Fiorini, P., and Shiller, Z. 1998. Motion planning in dynamic environments using velocity obstacles. Intl. J. on Robotics Research 17, 7, 760--772.Google ScholarGoogle ScholarCross RefCross Ref
  9. Funge, J., TU, X., and Terzopoulos, D. 1999. Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. Proc. of ACM SIGGRAPH, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gayle, R., Moss, W., Lin, M. C., and Manocha, D. 2009. Multi-robot coordination using generalized social potential fields. Proc. IEEE Conf. Robotics and Automation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M. C., Manocha, D., and Dubey, P. 2009. Clearpath: Highly parallel collision avoidance for multi-agent simulation. Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Harlow, F. H. 1963. The particle-in-cell method for numerical simulation of problems in fluid dynamics. In Proc. Symp. Appl. Math., vol. 15.Google ScholarGoogle Scholar
  13. Heigeas, L., Luciani, A., Thollot, J., and Castagné, N. 2003. A physically-based particle model of emergent crowd behaviors. Proc. Graphikon '03 2.Google ScholarGoogle Scholar
  14. Helbing, D., and Molnár, P. 1995. Social force model for pedestrian dynamics. Physical Review E 51 (May), 4282.Google ScholarGoogle ScholarCross RefCross Ref
  15. Helbing, D., Buzna, L., Johansson, A., and Werner, T. 2005. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Sci. 39, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hughes, R. L. 2003. The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169--182.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kamphuis, A., and Overmars, M. 2004. Finding paths for coherent groups using clearance. Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kerr, W., and Spears, D. 2005. Robotic simulation of gases for a surveillance task. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (Aug.), 2905--2910.Google ScholarGoogle Scholar
  19. Lakoba, T. I., Kaup, D. J., and Finkelstein, N. M. 2005. Modifications of the Helbing-Molnar-Farkas-Vicsek social force model for pedestrian evolution. SIMULATION 81, 339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lamarche, F., and Donikian, S. 2004. Crowd of virtual humans: a new approach for real-time navigation in complex and structured environments. Computer Graphics Forum 23, 3, 509--518.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lin, M. C., Guy, S., Narain, R., Sewall, J., Patil, S., Chhugani, J., Golas, A., den Berg, J. V., Curtis, S., Wilkie, D., Merrell, P., Kim, C., Satish, N., Dubey, P., and Manocha, D. 2009. Interactive modeling, simulation and control of large-scale crowds and traffic. Proc. Workshop on Motion in Games (Springer-Verlag Lecture Notes in Computer Science Series). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Loscos, C., Marchal, D., and Meyer, A. 2003. Intuitive crowd behaviour in dense urban environments using local laws. In Theory and Practice of Computer Graphics, 122--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. McAdams, A., Selle, A., Ward, K., Sifakis, E., and Teran, J. 2009. Detail preserving continuum simulation of straight hair. ACM Trans. Graph. 28, 3, 62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Metoyer, R. A., and Hodgins, J. K. 2003. Reactive pedestrian path following from examples. In Proc. 16th Int. Conf. Computer Animation and Social Agents, 149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Musse, S. R., and Thalmann, D. 1997. A model of human crowd behavior: Group inter-relationship and collision detection analysis. Computer Animation and Simulation, 39--51.Google ScholarGoogle Scholar
  26. Paris, S., Pettre, J., and Donikian, S. 2007. Pedestrian reactive navigation for crowd simulation: a predictive approach. Computer Graphics Forum 26, 3 (September), 665--674.Google ScholarGoogle ScholarCross RefCross Ref
  27. Pelechano, N., O'Brien, K., Silverman, B., and Badler, N. 2005. Crowd simulation incorporating agent psychological models, roles and communication. First Intl. Workshop on Crowd Simulation.Google ScholarGoogle Scholar
  28. Pelechano, N., Allbeck, J. M., and Badler, N. I. 2008. Virtual Crowds: Methods, Simulation and Control. Morgan and Claypool Publishers.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pettré, J., Laumond, J.-P., and Thalmann, D. 2005. A navigation graph for real-time crowd animation on multilayered and uneven terrain. First Intl. Workshop on Crowd Simulation, 81--90.Google ScholarGoogle Scholar
  30. Pettré, J., Kallmann, M., and Lin, M. C. 2008. Motion planning and autonomy for virtual humans. In ACM SIGGRAPH 2008 classes, 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pimenta, K., Michael, N., Mesquita, R., Pereira, G., and Kumar, V. 2008. Control of swarms based on hydrodynamic models. Proc. IEEE Int. Conf. Robotics and Automation (May), 1948--1953.Google ScholarGoogle Scholar
  32. Reynolds, C. W. 1987. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH 21, 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Reynolds, C. W. 1999. Steering behaviors for autonomous characters. Game Developers Conference 1999.Google ScholarGoogle Scholar
  34. Schreckenberg, M., and Sharma, S. D. 2001. Pedestrian and Evacuation Dynamics. Springer.Google ScholarGoogle Scholar
  35. Shao, W., and Terzopoulos, D. 2007. Autonomous pedestrians. Graph. Models 69, 5--6, 246--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Shimizu, M., Ishiguro, A., Kawakatsu, T., Masubuchi, Y., and Doi, M. 2003. Coherent swarming from local interaction by exploiting molecular dynamics and Stokesian dynamics methods. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems 2 (Oct.), 1614--1619 vol. 2.Google ScholarGoogle Scholar
  37. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2008. Globally coupled impulse-based collision handling for cloth simulation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., and Manocha, D. 2007. Real-time navigation of independent agents using adaptive roadmaps. In Proc. ACM Symp. Virtual Reality Software and Technology, 99--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sud, A., Andersen, E., Curtis, S., Lin, M., and Manocha, D. 2008. Real-time path planning in dynamic virtual environments using multi-agent navigation graphs. IEEE Trans. Visualization and Computer Graphics 14, 3, 526--538. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sugiyama, Y., Nakayama, A., and Hasebe, K. 2001. 2-dimensional optimal velocity models for granular flows. In Pedestrian and Evacuation Dynamics, 155--160.Google ScholarGoogle Scholar
  41. Sung, M., Gleicher, M., and Chenney, S. 2004. Scalable behaviors for crowd simulation. Computer Graphics Forum 23, 3 (Sept), 519--528.Google ScholarGoogle ScholarCross RefCross Ref
  42. Thalmann, D., O'Sullivan, C., Ciechomski, P., and Dobbyn, S. 2006. Populating Virtual Environments with Crowds. Eurographics 2006 Tutorial Notes.Google ScholarGoogle Scholar
  43. Treuille, A., Cooper, S., and Popovic, Z. 2006. Continuum crowds. ACM Trans. Graph. 25, 3, 1160--1168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. van den Berg, J., Lin, M. C., and Manocha, D. 2008. Reciprocal velocity obstacles for real-time multi-agent navigation. Proc. IEEE Conf. Robotics and Automation, 1928--1935.Google ScholarGoogle Scholar
  45. van den Berg, J., Patil, S., Seawall, J., Manocha, D., and Lin, M. C. 2008. Interactive navigation of individual agents in crowded environments. Proc. ACM Symposium on Interactive 3D Graphics and Games, 139--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. van den Berg, J., Guy, S. J., Lin, M. C., and Manocha, D. 2009. Reciprocal n-body collision avoidance. Proc. Intl. Symposium on Robotics Research.Google ScholarGoogle Scholar
  47. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., and Lin, M. C. 2008. Composite agents. Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In Proc. ACM SIGGRAPH, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Aggregate dynamics for dense crowd simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers
        December 2009
        669 pages
        ISBN:9781605588582
        DOI:10.1145/1661412

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 December 2009

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGGRAPH Asia '09 Paper Acceptance Rate70of275submissions,25%Overall Acceptance Rate178of869submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader