skip to main content
10.1145/1718487.1718490acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

Towards recency ranking in web search

Published:04 February 2010Publication History

ABSTRACT

In web search, recency ranking refers to ranking documents by relevance which takes freshness into account. In this paper, we propose a retrieval system which automatically detects and responds to recency sensitive queries. The system detects recency sensitive queries using a high precision classifier. The system responds to recency sensitive queries by using a machine learned ranking model trained for such queries. We use multiple recency features to provide temporal evidence which effectively represents document recency. Furthermore, we propose several training methodologies important for training recency sensitive rankers. Finally, we develop new evaluation metrics for recency sensitive queries. Our experiments demonstrate the efficacy of the proposed approaches.

References

  1. I. Arikan, S. Bedathur, and K. Berberich. Time will tell: Leveraging temporal expressions in ir. WSDM, 2009.Google ScholarGoogle Scholar
  2. R. Baeza-Yates, F. Saint-Jean, and C. Castillo. Web dynamics, age and page qualit. String Processing and Information Retrieval, pages 453--461, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  3. K. Berberich, M. Vazirgiannis, and G. Weikum. Time-aware authority rankings. Internet Math, 2(3):301--332, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  4. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent.Google ScholarGoogle Scholar
  5. Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank: From pairwise approach to listwise. Proceedings of ICML conference, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Cho, S. Roy, and R. Adams. Page quality: In search of an unbiased web ranking. Proc. of ACM SIGMOD Conference, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G.M. Del Corso, A. Gulli, and F. Romani. Ranking a stream of news. Proc. of WWW Conference, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. F. Diaz. Integration of news content into web results. Proceedings of the Second ACM International Conference on Web Search and Data Mining (WSDM), pages 182--191, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Y. Freund, R.D. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Proceedings of International Conference on Machine Learning, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Statist., 29:1189--1232, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  11. K. Jarvelin and J. Kekalainen. Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems, 20:422--446, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Kleinberg. Bursty and hierarchical structure in streams. In KDD, pages 91--101, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A.C. König, M. Gamon, and Q. Wu. Click-through prediction for news queries. Proc. of SIGIR, pages 347--354, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. X. Li, B. Liu, and P. Yu. Time sensitive ranking with application to publication search. Proceedings of Eighth IEEE International Conference on Data Mining, pages 893--898, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. T.Y. Liu. Learning to rank for information retrieval. Tutorial on WWW conference, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Nunes. Exploring temporal evidence in web information retrieval. BCS IRSG Symposium: Future Directions in Information Access, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Pandey, S. Roy, C. Olston, J. Cho, and S. Chakrabarti. Shuffling a stacked deck: The case for partially randomized ranking of search engine results. VLDB, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Pasca. Towards temporal web search. ACM SAC, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities, periodicities and bursts for online search queries. In SIGMOD, pages 131--142, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. X. Wang and C. Zhai. Learn from web search logs to organize search results. In Proceedings of the 30th ACM SIGIR, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Zhang, Y. Chang, Z. Zheng, D. Metzler, and J. Nie. Search result re-ranking by feedback control adjustment for time-sensitive query. North American Chapter of the Association for Computational Linguistics -- Human Language Technologies (NAACL HLT), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Z. Zheng, H. Zhang, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boosting method and its application to learning ranking functions for web search. NIPS, 2007.Google ScholarGoogle Scholar

Index Terms

  1. Towards recency ranking in web search

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      WSDM '10: Proceedings of the third ACM international conference on Web search and data mining
      February 2010
      468 pages
      ISBN:9781605588896
      DOI:10.1145/1718487

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 February 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate498of2,863submissions,17%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader