skip to main content
research-article

Nonlinear disparity mapping for stereoscopic 3D

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

This paper addresses the problem of remapping the disparity range of stereoscopic images and video. Such operations are highly important for a variety of issues arising from the production, live broadcast, and consumption of 3D content. Our work is motivated by the observation that the displayed depth and the resulting 3D viewing experience are dictated by a complex combination of perceptual, technological, and artistic constraints. We first discuss the most important perceptual aspects of stereo vision and their implications for stereoscopic content creation. We then formalize these insights into a set of basic disparity mapping operators. These operators enable us to control and retarget the depth of a stereoscopic scene in a nonlinear and locally adaptive fashion. To implement our operators, we propose a new strategy based on stereoscopic warping of the input video streams. From a sparse set of stereo correspondences, our algorithm computes disparity and image-based saliency estimates, and uses them to compute a deformation of the input views so as to meet the target disparities. Our approach represents a practical solution for actual stereo production and display that does not require camera calibration, accurate dense depth maps, occlusion handling, or inpainting. We demonstrate the performance and versatility of our method using examples from live action post-production, 3D display size adaptation, and live broadcast. An additional user study and ground truth comparison further provide evidence for the quality and practical relevance of the presented work.

Skip Supplemental Material Section

Supplemental Material

References

  1. 3dtv.at, 2010. Stereoscopic player, Jan. http://www.3dtv.at/.Google ScholarGoogle Scholar
  2. Agrawal, A., and Raskar, R. 2007. Gradient domain manipulation techniques in vision and graphics. In ICCV Courses.Google ScholarGoogle Scholar
  3. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 3, 804--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baker, S., and Matthews, I. 2004. Lucas-Kanade 20 years on: A unifying framework. IJCV 56, 3, 221--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Banks, M. S., Gepshtein, S., and Landy, M. S. 2004. Why is spatial stereoresolution so low? Journal of Neuroscience 24, 2077--2089.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bleyer, M., Gelautz, M., Rother, C., and Rhemann, C. 2009. A stereo approach that handles the matting problem via image warping. In CVPR, 501--508.Google ScholarGoogle Scholar
  7. Burt, P., and Juelsz, B. 1980. A disparity gradient limit for binocular fusion. Science 208, 4444 (5), 615--617.Google ScholarGoogle Scholar
  8. Carroll, R., Agrawala, M., and Agarwala, A. 2009. Optimizing content-preserving projections for wide-angle images. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Criminisi, A., Blake, A., Rother, C., Shotton, J., and Torr, P. H. 2007. Efficient dense stereo with occlusions for new view-synthesis by four-state dynamic programming. Int. J. Comput. Vision 71, 1, 89--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cutting, J. E., and Vishton, P. M. 1995. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Handbook of perception and cognition, Perception of space and motion, W. Epstein and S. Rogers, Eds., vol. 5. Academic Press, San Diego, CA.Google ScholarGoogle Scholar
  11. David, H. A. 1963. The Method of Paired Comparisons. Charles Griffin & Company.Google ScholarGoogle Scholar
  12. Feldmann, I., Schreer, O., and Kauff, P. 2003. Nonlinear depth scaling for immersive video applications. WIAMIS.Google ScholarGoogle Scholar
  13. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In SIGGRAPH, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Guo, C., Ma, Q., and Zhang, L. 2008. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. CVPR.Google ScholarGoogle Scholar
  15. Guttmann, M., Wolf, L., and Cohen-Or, D. 2009. Semiautomatic stereo extraction from video footage. In ICCV.Google ScholarGoogle Scholar
  16. Hoffman, D. M., Girshick, A. R., Akeley, K., and Banks, M. S. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 3 (3), 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  17. Howard, I. P., and Rogers, B. J. 2002. Seeing in Depth. Oxford University Press, New York, USA.Google ScholarGoogle Scholar
  18. Kim, M.-B., Lee, S., Choi, C., Um, G.-M., Hur, N.-H., and Kim, J.-W. 2008. Depth scaling of multiview images for auto-multiscopic 3D monitors. In 3DTV08.Google ScholarGoogle Scholar
  19. Krähenbühl, P., Lang, M., Hornung, A., and Gross, M. 2009. A system for retargeting of streaming video. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lambooij, M., IJsselsteijn, W., Fortuin, M., and Heynderickx, I. 2009. Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Science and Technology 53, 3, 030201.Google ScholarGoogle ScholarCross RefCross Ref
  21. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In SIGGRAPH, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Liu, F., Gleicher, M., Jin, H., and Agarwala, A. 2009. Content-preserving warps for 3D video stabilization. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 2, 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mahajan, D., Huang, F.-C., Matusik, W., Ramamoorthi, R., and Belhumeur, P. N. 2009. Moving gradients: a path-based method for plausible image interpolation. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Matusik, W., and Pfister, H. 2004. 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans. Graph. 23, 3, 814--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mendiburu, B. 2009. 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press.Google ScholarGoogle Scholar
  27. Mobile 3DTV, 2010. Stereo video data-sets, Jan. http://sp.cs.tut.fi/mobile3dtv/stereo-video/.Google ScholarGoogle Scholar
  28. Neuman, R., 2009. Personal Communication with Robert Neuman, Chief Stereographer, Disney Animation Studios.Google ScholarGoogle Scholar
  29. Paris, S., and Durand, F. 2006. A fast approximation of the bilateral filter using a signal processing approach. In ECCV (4), 568--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pritch, Y., Ben-Ezra, M., and Peleg, S. 2000. Automatic disparity control in stereo panoramas (omnistereo). In OMNIVIS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. 2005. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sattler, T., Leibe, B., and Kobbelt, L. 2009. SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter. In ICCV.Google ScholarGoogle Scholar
  33. Seitz, S., and Dyer, C. 1996. View morphing. In SIGGRAPH 96, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shade, J., Gortler, S. J., Li-wei, H., and Szeliski, R. 1998. Layered depth images. In SIGGRAPH, 231--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shamir, A., and Sorkine, O. 2009. Visual media retargeting. In SIGGRAPH ASIA Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Siegel, M., and Nagata, S. 2000. Just enough reality: Comfortable 3-D viewing via microstereopsis. IEEE Transactions on Circuits and Systems for Video Technology 10, 3 (4), 387--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Smolic, A., Mller, K., Dix, K., Merkle, P., Kauff, P., and Wiegand, T. 2008. Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems. In ICIP, IEEE, 2448--2451.Google ScholarGoogle Scholar
  38. Stelmach, L. B., Tam, W. J., Meegan, D. V., and Vincent, A. 2000. Stereo image quality: effects of mixed spatio-temporal resolution. IEEE Transactions on Circuits and Systems for Video Technology 10, 2, 188--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sun, G., and Holliman, N. 2009. Evaluating methods for controlling depth perception in stereoscopic cinematography. Stereoscopic Displays and Virtual Reality Systems XX, Proceedings of SPIE 7237 (1).Google ScholarGoogle Scholar
  40. the Foundry, 2010. Ocular, Nuke, Jan. http://www.thefoundry.co.uk/.Google ScholarGoogle Scholar
  41. van den Hengel, A., Dick, A. R., Thormählen, T., Ward, B., and Torr, P. H. S. 2007. Videotrace: rapid interactive scene modelling from video. ACM Trans. Graph. 26, 3, 86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wang, C., and Sawchuk, A. A. 2008. Disparity manipulation for stereo images and video. SPIE, vol. 6803.Google ScholarGoogle Scholar
  43. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4, 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wang, Y.-S., Fu, H., Sorkine, O., Lee, T.-Y., and Seidel, H.-P. 2009. Motion-aware temporal coherence for video resizing. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., and Bischof, H. 2009. Anisotropic Huber-L1 optical flow. In British Machine Vision Conference (BMVC).Google ScholarGoogle Scholar
  46. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Trans. Graph. 26, 3, 32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S. A. J., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. ACM Trans. Graph. 23, 3, 600--608. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nonlinear disparity mapping for stereoscopic 3D

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 29, Issue 4
      July 2010
      942 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1778765
      Issue’s Table of Contents

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 July 2010
      Published in tog Volume 29, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader