skip to main content
10.1145/1978942.1979307acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Surfpad: riding towards targets on a squeeze film effect

Published:07 May 2011Publication History

ABSTRACT

We present Surfpad, a pointing facilitation technique that does not decrease target distance or increase target width in either control or display space. This new technique operates instead in the tactile domain by taking advantage of the ability to alter a touchpad's coefficient of friction by means of a squeeze film effect. We report on three experiments comparing Surfpad to the Semantic Pointing technique and constant control-display gain with and without distractor targets. Our results clearly show the limits of traditional target-aware control-display gain adaptation in the latter case, and the benefits of our tactile approach in both cases. Surfpad leads to a performance improvement close to 9% compared to unassisted pointing at small targets with no distractor. It is also robust to high distractor densities, keeping an average performance improvement of nearly 10% while Semantic Pointing can degrade up to 100%. Our results also suggest the performance improvement is caused by tactile information feedback rather than mechanical causes, and that the feedback is more effective when friction is increased on targets using a simple step function.

Skip Supplemental Material Section

Supplemental Material

1979307.mp4

mp4

112.7 MB

References

  1. D. Ahlström, M. Hitz, and G. Leitner. An evaluation of sticky and force enhanced targets in multi target situations. In Proc. of NordiCHI'06, 58--67. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Akamatsu and I. S. MacKenzie. Movement characteristics using a mouse with tactile and force feedback. IJHCS, 45(4):483--493, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Akamatsu, I. S. MacKenzie, and T. Hasbrouc. A comparison of tactile, auditory, and visual feedback in a pointing task using a mouse-type device. Ergonomics, 38(4):816--827, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  4. T. Asano, E. Sharlin, Y. Kitamura, K. Takashima, and F. Kishino. Predictive interaction using the delphian desktop. In Proc. of UIST'05, 133--141. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Balakrishnan. "Beating" Fitts' law: virtual enhancements for pointing facilitation. IJHCS, 61(6):857--874, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. O. Bau, I. Poupyrev, A. Israr, and C. Harrison. Teslatouch: electrovibration for touch surfaces. In Proc. of UIST'10, 283--292. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Baudisch, E. Cutrell, M. Czerwinski, D. C. Robbins, P. Tandler, B. B. Bederson, and A. Zierlinger. Drag-and-pop and drag-and-pick: techniques for accessing remote screen content on touch- and pen-operated systems. In Proc. of Interact'03, 57--64. IOS Press, 2003.Google ScholarGoogle Scholar
  8. P. Baudisch, A. Zotov, E. Cutrell, and K. Hinckley. Starburst: a target expansion algorithm for non-uniform target distributions. In Proc. of AVI'08, 129--137. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Biet, F. Giraud, and B. Semail. Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Transactions on Ultrasonic, Ferroelectric and Frequency Control, 54(12):2678--2688, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Semantic pointing: improving target acquisition with control-display ratio adaptation. In Proc. of CHI'04, 519--526. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. S. Campbell, S. Zhai, K. W. May, and P. P. Maglio. What you feel must be what you see: Adding tactile feedback to the trackpoint. In Proc. of Interact'99, 383--390. IOS Press, 1999.Google ScholarGoogle Scholar
  12. G. Casiez, D. Vogel, R. Balakrishnan, and A. Cockburn. The impact of control-display gain on user performance in pointing tasks. Human-Computer Interaction, Taylor and Francis, 23(3):215--250, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Cockburn and S. Brewster. Multimodal feedback for the acquisition of small targets. Ergonomics, 48(9):1129--1150, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Cockburn and A. Firth. Improving the acquisition of small targets. In Proc. of HCI'03, 77--80. BCS, 2003.Google ScholarGoogle Scholar
  15. J. T. Dennerlein, D. B. Martin, and C. Hasser. Force-feedback improves performance for steering and combined steering-targeting tasks. In Proc. of CHI'00, 423--429. ACM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. T. Dennerlein and M. C. Yang. Haptic force-feedback devices for the office computer: Performance and musculoskeletal loading issues. Human Factors, 43(2):278--286, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  17. C. Forlines and R. Balakrishnan. Evaluating tactile feedback and direct vs. indirect stylus input in pointing and crossing selection tasks. In Proc. of CHI'08, 1563--1572. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Grossman and R. Balakrishnan. The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor's activation area. In Proc. of CHI'05, 281--290. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Guiard, R. Blanch, and M. Beaudouin-Lafon. Object pointing: a complement to bitmap pointing in GUIs. In Proc. of GI'04, 9--16. CHCCS, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. Harrison and S. E. Hudson. Texture displays: a passive approach to tactile presentation. In Proc. of CHI'09, 2261--2264. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Hurst, J. Mankoff, A. K. Dey, and S. E. Hudson. Dirty desktops: using a patina of magnetic mouse dust to make common interactor targets easier to select. In Proc. of UIST '07, 183--186. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Hwang, S. Keates, P. M. Langdon, and P. J. Clarkson. Multiple haptic targets for motion-impaired computer users. In Proc. of CHI'03, 41--48. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. Kabbash and W. Buxton. The "prince" technique: Fitts' law and selection using area cursors. In Proc. of CHI'95, 273--279. ACM/Addison-Wesley, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. V. Keyson. Dynamic cursor gain and tactual feedback in the capture of cursor movements. Ergonomics, 40(12):1287 -- 1298, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Kobayashi and T. Igarashi. Ninja cursors: using multiple cursors to assist target acquisition on large screens. In Proc. of CHI'08, 949--958. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Lécuyer, J.-M. Burkhardt, and L. Etienne. Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. In Proc. of CHI'04, 239--246. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. J. McGuffin and R. Balakrishnan. Fitts' law and expanding targets: experimental studies and designs for user interfaces. ACM ToCHI, 12(4):388--422, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. I. Oakley, M. R. McGee, S. Brewster, and P. Gray. Putting the feel in 'look and feel'. In Proc. of CHI'00, 415--422. ACM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. W. Soukoreff and I. S. MacKenzie. Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts' law research in HCI. IJHCS, 61(6):751--789, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. B. F. van Erp, K.-U. Kyung, S. Kassner, J. Carter, S. A. Brewster, G. Weber, and I. Andrew. Setting the standards for haptic and tactile interactions: ISO's work. In Proc. of EuroHaptics'10, 353--358. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. K. van Mensvoort. What you see is what you feel: exploiting the dominance of the visual over the haptic domain to simulate force-feedback with cursor displacements. In Proc. of DIS'02, 345--348. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T. Watanabe and S. Fukui. A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In Proc. of ICRA'95, 1134--1139. IEEE.Google ScholarGoogle Scholar
  33. L. Winfield, J. Glassmire, J. E. Colgate, and M. Peshkin. T-pad: Tactile pattern display through variable friction reduction. In Proc. of World Haptics Conf., 421--426. IEEE, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. O. Wobbrock, J. Fogarty, S.-Y. Liu, S. Kimuro, and S. Harada. The angle mouse: target-agnostic dynamic gain adjustment based on angular deviation. In Proc. of CHI'09, 1401--1410. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Worden, N. Walker, K. Bharat, and S. Hudson. Making computers easier for older adults to use: area cursors and sticky icons. In Proc. of CHI'97, 266--271. ACM, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Surfpad: riding towards targets on a squeeze film effect
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CHI '11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
          May 2011
          3530 pages
          ISBN:9781450302289
          DOI:10.1145/1978942

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 May 2011

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          CHI '11 Paper Acceptance Rate410of1,532submissions,27%Overall Acceptance Rate6,199of26,314submissions,24%

          Upcoming Conference

          CHI '24
          CHI Conference on Human Factors in Computing Systems
          May 11 - 16, 2024
          Honolulu , HI , USA

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader